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École Normale Supérieure de Lyon

November 22, 2020

Abstract

Can fact-checking improve communication on social networks? I study a commu-
nication network where agents can publicly commit ex-ante to fact-check any message
they send with a reliability of their choice. I show that truth-seeking agents use fact-
checking as a device to verify information while biased agents -who want false opinions
to spread - use fact-checking as a persuasion device to improve their credibility. I
describe how a designer can implement full communication (all messages are trusted
and transmitted) by choosing an appropriate cost for fact-checking commitment, to be
paid by agents. Finally, I study who carries the “burden of proof”; i.e. which agents
subject themselves to the necessary fact-checking to ensure sufficient trust in the net-
work. I show that when the cost of fact-checking is low, unbiased agents play that role.
Conversely, when the cost is high, biased agents do.
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comments on this project. I also wish to thank Shengwu Li and Jerry Green for their help on early versions
of this paper.
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1 Introduction

Concerns about misinformation on social media have grown in the public debate in recent
years. While many worry about the spread of false information, misinformation may also
be responsible for useful information failing to reach the population. In a survey about
COVID-19 information on social-media, Kreps & Kriner (2020) observed that less than
50% of respondents were able to identify that a correct piece of information was valid. In
comparison, more than 70% could identify a false piece of information as incorrect. Users
assess the veracity of information acquired on social media based on the credibility of both the
information and its source. On social media, this problem is magnified because information
circulates among a network of agents, and the primary source is seldom known. As a result,
agents need to assess the credibility of both a particular sender and the whole chain of
information upstream.

My paper proposes a new tool for platform designers to correct communication failures
due to credibility issues of this nature. More precisely, I build a theoretical model inspired
by Bloch, Demange & Kranton (2018), where agents in a network can strategically choose to
share a piece of information with an unknown source. I then show how platforms can restore
trust and solve communication failures by allowing agents to fact-check the information they
send. Most fact-checking initiatives by digital platforms have taken the form of warnings and
advice provided to users who consume the information rather than those than produce or re-
lay it. I propose a different approach, where agents who send or transmit information choose
to subject themselves to fact-checking. Building on insight from the Bayesian persuasion
literature, I show that even “biased” agents (who want falsehoods to spread) may be willing
to subject themselves to fact-checking to gain credibility. I illustrate how platform designers
can incentivize enough fact-checking to fully restore communication within the network.

Following Bloch et al. (2018) model, my paper features two types of agents: biased and
unbiased. The existence of these types is common knowledge. Unbiased agents want others
to hold correct beliefs about some binary state of the world, coded as 1 or 0. In contrast,
biased agents want to disseminate a specific, potentially false belief: they want others to
systematically believe that the state of the world is 1, regardless of its true value. A single
agent chosen at random (the “source”) learns the state and can emit a signal of their choice
(that may be false) to inform their neighbors. If designated as source, unbiased agents
will create signals matching the state of the world. Biased agents, on the other hand, will
always create a signal equal to 1. Agents who receive the message can then transmit it to
other agents but cannot alter it. They can, however, block the message if they deem it
untrustworthy. Importantly, agents do not know whether the person who sends them the
message is the source or merely someone transmitting the message. To evaluate the veracity
of a message, agents need to assess how likely it is that the source is biased based on the
proportion of biased agents in each part of the network. The original contribution of my
paper is introducing a fact-checking commitment into this setting. Before communication,
all agents are allowed to buy a fact-checking device of reliability r, at a linear price c× r.
An agent who buys this device commits to having any message they send fact-checked with
reliability r, meaning that a false message has a probability r of being detected as false. If
a message is detected as false, then it is blocked by the device.

Such a stylized model of a fact-checking commitment is too simplistic to resemble any
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particular device a platform could provide. Its tractability, however, allows me to highlight
the persuasion forces that more realistic fact-checking commitment tools might generate. In
the analysis, I show that both types of agents will use this device, but for different reasons.
Unbiased agents will use fact-checking in a traditional way as a means of verifying the
information. Biased agents, on the other hand, will use it as a device of persuasion. They
use fact-checking to improve their credibility and ensure that their message is transmitted.
In line with the persuasion literature one could interpret the fact-checking device as resulting
from reputation or third-party involvement.

I examine how certain fact-checking strategy profiles r can restore trust and enable com-
munication, depending on the network structure. r corresponds to the vector of “reliabilities”
each agent choose for their own fact-checking device. In the baseline, no agents choose to
be fact-checked (all reliabilities r are set to 0), and communication failures arise in most
network structures. In such a situation, agents assess the credibility of messages solely based
on the number of biased agents upstream of them. If the proportion of biased agents is too
high, agents perceive messages as untrustworthy and choose to block them.

If agents choose to be fact-checked (with positive reliability), they gain credibility and
can persuade skeptical agents to transmit more messages. The gains from credibility are not
limited to direct relations. Indeed, agents evaluate a message based on its complete inferred
history of transmission. They update their beliefs taking into account not only how much
fact-checking the sender of the message is subjected to but also who might have sent the
message to the sender in the first place, and so forth. For all network structures, I determine
the existence of a set of trust-inducing fact-checking strategies that lead to a state of
“full communication” in the network. Full communication means that agents believe any
messages they receive. In this case, there is sufficient trust in the network such that any
agent transmits any message.

Finally, a platform designer can incentivize communication using fact-checking commit-
ments. I characterize a range of fact-checking costs for which trust-inducing, fact-checking
strategies are chosen by all agents at equilibrium. The expression of this range depends
on the network structure. In choosing a precise cost for fact-checking, a platform designer
can shift the burden of proof, i.e. who performs the necessary fact-checking to ensure trust.
For fact-checking at a small cost, it is mainly unbiased agents who fact-check, and they use
fact-checking to verify the information. For fact-checking at a high cost, the burden of proof
shifts towards biased agents, who use it to persuade other agents of their credibility.

This paper contributes to the literature on strategic communication within networks. The
research on strategic diffusion, initiated by “cheap talk” models in Crawford & Sobel (1982)
and Green & Stokey (2007), studies games with a Sender who has information and a Receiver
whose optimal action depends on this information. Several recent papers have studied how
strategic communication is affected by network structures when several agents are involved.
Early papers studied how networks might form endogenously from strategic communication
( [Calvó-Armengol, Mart́ı & Prat (2015)], [Hagenbach & Koessler (2010)]). Other models
study how (exogeneous) restrictions on the communication structure influence cheap-talk
outcomes. Galeotti, Ghiglino & Squintani (2013), for example, propose an extension to the
“cheap-talk” setting where each agent can communicate with a restricted set of neighbors.

This study most closely relates to a set of papers that characterize how information

3



diffuses over several rounds of strategic communication. Anderlini, Gerardi & Lagunoff
(2012) study a repeated game where agents select an action at each period and send a message
to all agents to influence their actions in future periods. Ambrus, Azevedo & Kamada
(2013), on the other hand, study “hierarchical cheap-talk,” where two agents communicate
through a chain of strategic intermediators. Each intermediator has an idiosyncratic bias and
wants to influence the final action. One particularity of both these models, shared by this
paper, is that agents are both senders and receivers of messages. This approach follows the
advice of sociologists Paul Lazarsfeld and Elihu Katz in 1966 [Katz & Lazarsfeld (1966)] and
considers the individual agent in their “two-fold capacity as a communicator and as a relay
point in the network of mass communication”1. Recent papers have introduced more general
network structures to study information diffusion with “two-fold” communication (agents
both receiving and transmitting information strategically). In a working paper, Gieczewski
(2020) studies a general framework where privately informed agents with heterogeneous
biases can emit verifiable signals that are then passed on from agent to agent in a network.
My paper departs from this modeling in that the primary source of information (the original
sender of the signal) cannot be identified.

As mentioned earlier in the Introduction, the underlying communication process of my
model is directly borrowed from Bloch et al. (2018) . I innovate from this paper in two
ways. First, a fact-checking commitment gives agents some leverage over their credibility.
In Bloch et al. (2018), agents’ credibility solely depended on the distribution of types among
the network, which was exogenous. My paper endogenizes credibility as a strategic feature
of the model. Second, my paper frames the problem of communication failures as a design
problem for platform managers. Without fact-checking, Bloch et al. (2018) showed that lack
of trust in a network, due to uncertainty regarding the source, can lead to communication
failures. I show how platform designers can use fact-checking to fully restore communication.

My paper builds on the cheap-talk over networks literature by introducing concepts
from information design. By allowing commitment to fact-checking, I introduce the concept
of bayesian persuasion [Kamenica & Gentzkow (2011)] in a network setting. The idea of
Bayesian persuasion is that un-trustworthy senders can gain credibility by committing to
the type of message they send. I show that fact-checking leads to a persuasion situation where
agents use it to gain credibility as they transmit messages. The question of how Bayesian
persuasion extends to network settings remains largely open. Egorov & Sonin (2019) studies
a model where a network of receivers can choose to either buy a biased signal from a central
sender (a public institution or a journal) or rely on their network to get the information for
free. Candogan (2019) proposes a setting where agents choose an action in a network of
strategic complementarities. A centralized designer can send a public message to incentivize
action. My setting is original in that the information designers carrying out persuasion are
agents themselves rather than a centralized entity. In my model, agents have access to a
fact-checking commitment they can use to shape their credibility. Such endogenous choices
shape communication outcomes in equilibrium.

1In their Introduction to Personal Influence, Paul Lazarsfeld and Elihu Katz wrote “We have once again
become interested in person-to-person communication and it now has become increasingly clear that the
person who reads something and talks about it with other people cannot be taken simply as a simile for
social entities like newspapers or magazines. He himself needs to be studied in his two-fold capacity as a
communicator and as a relay point in the network of mass communication.”
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In the next section, I present the baseline model of fact-checking in a communication
network. In Section 3, I characterize the set of fact-checking strategies that allow Full
Communication within the network. In Section 4, I show how a designer can generate such
strategies to achieve Full Communication. Section 5 discusses the results.

2 Model

2.1 Incentives: the voting game

There is a population of |N | = n agents and two possible states of the world θ ∈ {0, 1}.
Agents benefit from a collective decision x ∈ {0, 1}. There are two types of agents, distin-
guished by their preferences over x. Unbiased agents wish for x to match the state of the
world θ. Their payoffs from x are captured by the quadratic disutility −λU(x − θ)2, where
λU ∈ R+ scales their motivation. Biased agents wish for x to be set to 1, no matter what
θ is. Their payoffs from x are captured by −λB(x− 1)2.

A uniform probabilistic vote procedure implements the collective decision. Let z denote
the number of agents who voted for 1. The probability that the outcome of the collective
decision is x = 1 is equal to z

n
. Biased agents wish that for a high number of votes for x = 1,

unbiased agents wish for a high number of votes to match the state. With such a procedure,
biased agents systematically vote for θ = 1, furthermore wish that others believe that θ = 1.
Unbiased agents vote according to their beliefs. Furthermore they wish that other agents
share the same beliefs as they do (see Lemma 1 in Bloch et al. (2018)).

I argue for a lax interpretation of this voting decision. Any setting where agents care that
others share their beliefs fits this model. One can use it to model public debate about ethical,
political, or cultural issues where agents disagree about an uncertain underlying situation.

2.2 Pre-play communication

To inform their vote, agents communicate via a network. A network is a pair G =< N , E >,
where N is the set of agent, and E , the set of directed edges. I write N = U

⋃
B with U and

B being the set of unbiased and biased agents, respectively.
I denote ij the directed link from agent i to j. The set Ni is the set of neighbors of i,

i.e. i′ ∈ Ni ⇐⇒ ii′ ∈ E . Importantly, I assume that the network is a tree throughout the
paper: for any i and j, there exists a unique path between i and j. This assumption is made
for tractability and plays an important role in solving the model.

2.2.1 Message creation and transmission

Before the vote, agents communicate about the state of the world. Nature emits a private
signal with probability p to a single agent chosen uniformly at random. Suppose Nature
chooses j. Agent j, referred to as the source, is then given the right to send any message
mji ∈ {0, 1} to any of their neighbor i. It should be noted that any agent j will always
sends the same message to all of their neighbors simultaneously2. We can, therefore, simply

2This follows directly from [Bloch et al. (2018)]. Biased agents will clearly want to spread message 1 to
any neighbor. Unbiased agents will transmit any message they believe regardless of which neighbor they

5



denote the outgoing message as mj. Agent j can send a message matching the signal they
receive (mj = θ) or send a false message (mj = 1 − θ). They can also choose not to send
any message (mj = ∅).

Suppose agent i receives a message mj from j. Agent i can then pass them on to their
neighbors by sending mi. Agent i is not the source of the message but a messenger.
Messengers are allowed to transmit any messages they received (they can also choose to
block them). They cannot, however, alter it and create original messages as the source does.
Formally, if i is a messenger receiving a message from j, we must have mi = mj or mi = ∅.
If i sent the message to his or her neighbors, these neighbors can transmit the message
themselves, and so on until no further communication is possible.

2.2.2 Fact-checking commitment

Before any communication (before the source is designated), agents can commit to a fact-
checking device. This device verifies the trustfulness of messages they send along their
outgoing edges.

Consider any agent j (not necessarily the source from before). For each of their outgoing
edges ji, j can commit publicly to a fact-checking device of reliability rji. For this reliability,
j will have to pay a cost c× rji, with c ≥ 0. Suppose now that the game has started and j
receives a message. They decide to transmit this message to their neighbors and sends mji

to i. The fact-checking device verifies this message with reliability rji before it reaches i.
Message mji can pass the test (and be transmitted) or fail (and be muted). When the state
of the world is θ = 0, a message mji = 1 passes the test with probability 1− rji. A message
mji = 0 passes the test with probability equal to 1. Conversely, when the state of the world
is θ = 1, a message mji = 1 passes the test with probability 1 and a message mji = 0 passes
the test with probability 1− rji. This specification implies that the fact-checking test gives
false negatives with probability 1− rji and gives false positives with probability zero.

If the transmission is successful, i receives the message and can pass it on to their neigh-
bors. It is important to note that j committed before the beginning of the game. It means
that if j wants to transmit a false message (because they are a biased source, for example,
and learned that the state is 0), they will have to fact-check their message at the intermediate
stage in any case. Furthermore, reliability is public: agents who receive messages from j will
know that it has been fact-checked.

2.3 Summary of the game

I will refer to the game presented in this section as the fact-checking game. The fact-
checking game comprises two stages. In the first stage, or commitment stage, agents
commit to fact-checking. In the second stage or communication stage, agents transmit
messages and vote. The subgame played in the communication stage essentially is the game
presented in Bloch et al. (2018). The authors characterize several equilibria of this game
in the corresponding paper, and I will rely on these results in my analysis. My contribu-
tion pertains to the new first stage, and as such, I will focus much of my analysis on the
commitment stage.

send it too. They therefore send the same message to all neighbors.

6



Agents commit
to fact-checking

strategies

Nature reveals state
to source

Messages transmission
and verification

Vote

Commitment
stage

Communication stage

i receives message
mji from j

i transmit (or not)
message to i′

Message becomes mii′

Device fact-checks
with reliability rii′

i′ receives
message mii′

Figure 1: Timing of the game

The timing of the game is summarized on figure 2.3. Agents choose communication
and fact-checking strategy in order to minimize cost of commitment and to maximize the
probability that their preferred collective decision is implemented. Writing uUi

utility for
unbiased agent i, and uBj

for biased agent j, we can write utility functions as:

uUi
(x, θ) = −λU(x− θ)2 − c

∑
i′∈Ni

rii′

uBj
(x, θ) = −λB(x− 1)2 − c

∑
j′∈Nj

rjj′ .

I denote by r ∈ [0, 1]|E| the (fact-checking) strategy profile of the first stage and with σ
the strategy profile of the second stage3. The strategy profile of the whole game can therefore
be written (r,σ).

2.4 Discussion

2.4.1 Message transmission

There are two potential roles for agents in the communication stage: source or messenger.
The source is a unique agent appointed by Nature. This agent is informed about the true
state, but their main power is not their knowledge. It rather is their capacity to create any
message without constraints, i.e. to lie. Messengers, agents who are not the source, can
only transmit messages they receive, without altering them.

Source and messengers therefore have different strategy spaces (the former can lie and
not the later). This assumption is realistic only in specific contexts, such as the sharing of
images or videos on social media. The development of new techniques to falsify images or
videos such as deepfake makes such situations more likely to occur. Nevertheless, the scope
of applications remains limited. I argue that it can reach more generality if interpreted as

3The second stage is a fully defined sequential game, so by strategy profile I mean a contingent plan of
actions for each player.
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a cognitive statement on how agents update their beliefs. The critical feature is that upon
receiving a message, one agent thinks that someone in the branch where the message came
from is the source. They do not automatically assume that the original source of a message
is the person directly sending this message to them. The random source assumption states
that before sending a signal, Nature chooses the source uniformly at random. It can be
interpreted as agents having uniform priors about who is the source in the branch when they
receive a message. In other words, agents think that it is equally likely that any agent in
the branch where the message comes had the opportunity to transform it. In the presence
of uncertainty over the source, agents may use this sort of rule of thumb.

2.4.2 Fact-checking

The most direct interpretation of fact-checking devices is an actual technology used by
platform designer. Imagine an online platform where messages circulate on a network in
the way described before. The fact-checking device is an option offered to the members of
the platform when they form a new link. If they choose that option, any messages that the
agent sends will be fact-checked by the platform. The reliability level an agent chose for this
fact-checking is displayed publicly on his profile and is available for all to see (not only their
neighbor).

One might wonder why agents would want the platform to police messages they send.
For truth-seeker agents, this is obvious why: they use the fact-checking device to fact-check.
That is, they buy a right to verify information. For biased agents, this is less clear. Choosing
to be fact-checked more will increase their chances of being caught lying. On the other hand,
because this choice is public, it also improves the credibility of the messages they send. An
agent who gets fact-checked with good reliability would be more likely to be believed, and
can, therefore, exercise more influence. This trade-off between fewer opportunities to lie and
more credibility is the core idea of Bayesian Persuasion. As Kamenica & Gentzkow (2011)]
shows, this trade-off is allowed by the commitment assumption. One exciting feature of the
model is that - because information circulates on a network - the credibility of messages
depends on the reliability of all agents that are upstream on a branch in the network. The
reliability chosen by others will, therefore, determine the optimal reliability chosen by any
given agent. As I will show in the paper, the tree nature of the network allows us to deter-
mine optimal reliabilities sequentially, starting from the end of the tree and going toward
the center.

The idea of a fact-checking device implemented by a platform is convenient for under-
standing, but other interpretations might hold. Reliability might emerge from a reputation
of integrity, for example. It might be that agents typically verify up to a certain degree
rij information before transmitting it and that this “integrity” is publicly known (and it
would be costly in the long term to deviate from it). The cost could be seen as the cost of
information gathering or the education cost needed to assess the quality of information.

As a remark note that I do not allow for false negative in the definition of the fact-
checking device. If the fact-checking device flags a message as false, it must be false. This
is without loss of generality. Assume that false negative have a positive probability. In this
case, agents who did not get information might fear that they did not receive a message
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because the fact-checking device gave a false negative. However, they also know that not
receiving a message may happen if Nature did not send a message or if someone blocked it.
In this case, the posteriors, when not receiving a message, are surely less than the prior for
θ = 1: µ0. This is also the case the no false-negative assumption4. Because µ0 < 1

2
, the

presence of false negatives will not create new shifts in beliefs (unbiased agents not receiving
messages will still vote for 0).

2.4.3 Further empirical motivation

The empirical literature shows that many Internet communications display features coherent
with my model. Cagé, Hervé & Viaud (2020), for example, showed that about 50% of
information on French media websites were simple copy-paste of an original piece, with the
source mentioned in only 5% of cases. This number is probably much higher for social media,
where information is informal. This contrasts heavily with traditional media, whose business
model heavily relied on reputation mechanisms that safeguard information quality Gentzkow
& Shapiro (2006). Several studies show how the lack of such safeguards, notably the mention
of an information source, has led to an increase in the spread of false information Allcott &
Gentzkow (2017).

It remains that certain assumptions, notably regarding fact-checking, may not seem ap-
plicable to many examples if one has in mind social media heavily studied by economists like
Twitter/X. Indeed, on Twitter, users are exposed to many tweets from other users they do
not know. In such cases, when types are not public, agents might signal their types when
fact-checking, which introduces a new layer of complexity to the model. My interest is in
different cases where the agents have a long-standing opportunity to observe each other and
know each other’s biases, whereas the information does not have a specific identifiable source.
The instant messaging application WhatsApp is a good example of such a case. WhatsApp
role in disseminating misinformation is more and more recognized Manjoo (2018). Exam-
ples include its role in spreading conspiracy theories in the 2018 Brazilian election Isaac
& Roose (2018) or how it fueled deadly mob violence in India Goel, Raj & Ravichandran
(2018). The private (and encrypted) nature of communication on WhatApps render the
identification of primary sources of misinformation very difficult - even for the platform it-
self Tyagi, Miers & Ristenpart (2019). Researchers studying the role of WhatApps during
the Brazilian election showed that most of the misinformation was spread through images
and videos that users rarely altered Resende, Melo, Sousa, Messias, Vasconcelos, Almeida &
Benevenuto (2019). Finally, WhatsApp is characterized by a network of strongly personal-
ized relationships marked by repeated communication O’Hara, Massimi, Harper, Rubens &
Morris (2014). In such relationships, individual biases are likely to be known.

4See footnote 15 in [Bloch et al. (2018)] for more details on updating when no message is received. The
core idea is that because biased agents always block messages equal to 0, these messages are more likely to
be blocked before reaching i than 1s. On the other hand, the absence of a signal from Nature or symmetric
false-negative impacts the probability of 1 and 0, not reaching i in the same way. Hence, the absence of a
message indicates that the state is more likely to be 0.
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3 Full Communication

There exist a set of fact-checking strategies that leads agents to believe any messages they
receive in the second stage. I call such set Full Communication Compatible strategies.
This section shows the existence of this set and characterize when they may be played in
equilibrium.

3.1 Equilibrium Concept

A designer can choose a cost for fact-checking such that communication and trust are entirely
restored between agents in the second stage. Trust means that beliefs of any (unbiased)
agent j upon receiving a message mji should shift in the direction of the message. Let
µi(mji) be the probability that θ = 1 according to i’s posterior beliefs. Trust implies that
µi(mji = 1) ≥ 1

2
and µi(mji = 0) ≤ 1

2
. I write µ the vector of all agents’ beliefs.

I use Perfect Bayesian Equilibrium (PBE) as an equilibrium concept. Borrowing
terminology from Bloch et al. (2018), a situation where communication is ensured on all
edges is referred to as a Full Communication Equilibrium (FCE).

Definition 1.A. For a given (fixed) fact-checking profile r, a set of strategies and beliefs
(σ,µ) is a Full Communication Equilibrium of the second-stage if (σ,µ) forms a
PBE of the subgame played in the second stage actions and:

• All unbiased sources create truthful messages (i.e. messages matching the signal send
by Nature).

• All unbiased messengers transmit any message they received.

I extend naturally this definition to characterize strategies of the entire game:

Definition 1.B. A set of strategies and beliefs
(
(r,σ),µ) is a Full Communication

Equilibrium if it is PBE of the fact-checking game and, given r, the profile (σ,µ) forms
an full communication equilibrium of the second stage.

The key feature of Full Communication Equilibrium is that unbiased agents transmit
any message they receive. Remember that from Bloch et al. (2018), unbiased agents only
transmit messages if they believe it (see section 2.1). Therefore, for FCE to be a PBE, it
must be that unbiased agents believe all messages they receive. In formal terms, it means
that for any unbiased agent i, i’s posterior upon receiving any message should shift in favor
of that message5. More specifically, beliefs are consistent with Full Communication in the
second stage if and only if µj(mi = 1) ≥ 1

2
, µj(mi = 0) ≤ 1

2
and µj(mi = ∅) ≤ 1

2
for all

i ∈ Nj, for all j ∈ U .
The condition µj(mi = 0) ≤ 1

2
arise naturally. Only unbiased sources have the incentive

to send messages equal to 0; hence a message equal to 0 should always be true. Similarly,
if j does not receive any message, it can be either because an agent blocked a 1 message,

5One should not worry about biased agents “trust”. Indeed because biased agents’ payoff is independent
of the state of the world, their strategies do not depend on their beliefs in equilibrium. Hence biased agents’
beliefs are irrelevant for the analysis of communication.
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a fact-checking device caught a false 1 message, or because Nature did not send any signal
in the first place. The first two events indicate that θ = 0 is more likely, while the second
does not inform on the state. Hence, surely µj(mi = ∅) ≤ 1

2
. The condition µj(mi = 1) ≥ 1

2

is more complex as the credibility of mi = 1 depends on i’s fact-checking behavior as well
as their place in the network. The remainder of this section characterizes conditions on
fact-checking strategies to obtain µj(mi = 1) ≥ 1

2
when agents play Full Communication

strategies in the second stage.

3.2 Full Trust Equilibria

Let Gi(j) denote the subgraph upstream of an edge ji, i.e., where a message going from j to
i might have originated. Figure 2 illustrates this concept. Bi(j) is the set of biased agents in
this subgraph, and Ui(j) the set of unbiased agents. I denote Si(j) = Bi(j)

⋃
Ui(j), the set

of all agents (nodes) in the subgraph. Finally let bSi(j) =
|Bi(j)|
|Si(j)| be the proportion of biased

agents in Gi(j).

i j Gi(j)

Figure 2: Definition of Gi(j).

When bSi(j) is very low, the probability that a biased agent is the source of a message
flowing from j to i is very low. In some networks where biased agents are sparsely dis-
tributed, there exists Full Communication Equilibrium where no agents are fact-checking.
Following Bloch et al. (2018), I call such an equilibrium a Full Trust Equilibrium.

Theorem 1. (Adapted from Bloch et al. (2018)) A Full Communication Equilibrium where
rij = 0 for all edges ij ∈ E (Full Trust equilibrium) exists if and only if for each unbiased
agents i and each of its neighbors j:

µ0

1− µ0

≥ bSi(j). (1)

Proof. See Appendix in [Bloch et al. (2018)].
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A Full Trust Equilibrium will occur if enough unbiased agents exist in all branches so
that when a message circulates, the likelihood that it comes from an unbiased source is
sufficiently high.

U1B2

U4

U3

(a) Full Trust Equilibrium does hold

U1 U3B2

(b) Full Trust Equilibrium does not hold

Figure 3: Full Trust Equilibrium

Example 1. Consider the example in figure 3(a), with four agents: three unbiased and one
biased. Suppose U1 receives a message mB2 = 1. U1 posteriors will be computed with Bayes’
rule:

µU1(mB2 = 1) =
µ0 × P (mB2 = 1|θ = 1)

µ0 × P (mB2 = 1|θ = 1) + (1− µ0)× P (mB2 = 1|θ = 0)
.

To compute P (mB2 = 1|θ = 1), consider what happens if θ = 1, assuming that agents
plays FCE strategies in the second stage. Any agent designated as source send a true message,
including B2. B2 will transmit a message equal to 1 to U1. Hence, P (mB2 = 1|θ = 1) = 1.
Suppose now that θ = 0. If U4 and U3 are the source, they will send a message equal to
0, but B2 will block it. If B2 is the source, they send a message equal to 1. If B2 doesn’t
fact-check, this message will always reach U1. Hence when θ = 0, U1 receives a message
equal to 1 only if the source is biased: P (mB2 = 1|θ = 0) = bSU1

(B2) =
1
3
. For µ0 = 0.3, U1

forms the following posteriors:

µU1(mB2 = 1) =
µ0 × 1

µ0 × 1 + (1− µ0)× 1
3

≈ 0.53 ≥ 1

2
.

Hence, U1 will believe any message they receive, even without fact-checking. Because the
situation is symmetric for other unbiased agents, we can conclude that a Full Communication
Equilibrium exists, with no fact-checking.

Consider now figure 3(b). U1 posterior can be computed using the same method. For
µ0 = 0.3, we obtain µU1(mB2 = 1) ≈ 0.46 ≤ 1

2
. It means that, without fact-checking, U1 will

not believe a message mB2 received from B2. It follows that a Full Trust Equilibrium with
no fact-checking does not exist.

In Figure 3(a), the low number of biased agents relative to unbiased agents plays in
favor of trust. Indeed, messages are more likely to come from unbiased sources; hence they
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are trusted. Because U1 is already trustful, there is no need for B2 to use fact-checking to
persuade more, whatever the cost of fact-checking is. In Figure 3(b), on the other hand, the
concentration of biased agents on the branch coming toward U1 is too high. There are not
enough unbiased agents on that branch to convince them that the message is trustworthy.
The condition in Theorem 1 captures precisely this phenomenon.

In the next subsection, I show how B2 can improve their credibility by fact-checking
more. If B2 fact-checks enough, U1 will end up believing them, and trust will be restored.

3.3 Full-Communication Compatible Strategies

In the previous example, only if B2 fact-checks a certain amount will the message be believed.
Full Communication compatible (FCC) strategies are such that, when played in the first
stage, agents believe any message they receive in the second stage.

Definition 2. A fact-checking strategy profile r is Full-Communication compatible if
when r is played in the first stage, then a Full Communication Equilibrium of the second
stage exists.

The following example illustrate how FCC strategies can be constructed.

U1B2

B3

B4

B10

U5U6

U7 U8

U10

U9

r ≥ 1
7

r ≥ 5
14

Figure 4: Full Communication Compatible strategies with problematic edges

Example 2. Consider the network depicted on figure 4. The directed edges in red are prob-
lematic edges. Without any fact-checking, a message coming from B2 will not be believed by
U1 nor by U5. However, all messages are believed on any other edges on the network. We
can use problematic edges to divide the network into three sub-networks (circled), each inside
of which there is full trust. Consider the posteriors of U1 after receiving mB2 = 1. When
receiving this message, U1 knows that the source is someone in SU1(B2) (yellow and blue
circle). More precisely, because of the (uniform) random source assumption, U1 thinks that

13



there is a probability bSU1
(B2) =

4
7
that the source is biased and a probability 1− bSU1

(B2) =
3
7

that the source is unbiased. Suppose all agents in SB2(U1) play Full communication equilib-
rium in the second stage. When a message originates in SB2(U1), the only problematic edge
it goes through on its way to U1 is B2U1. Hence, we get:

P (mB2U1 = 1|θ = 1) = µ0 × [bSB2
(U1)σB(1|θ = 1) + (1− bSB2

(U1))σU (1|θ = 1)],

P (mB2U1 = 1|θ = 0) = (1− µ0)× [bSB2
(U1)(1− rB2U1)σB(1|θ = 0) + (1− bSB2

(U1))σU (1|θ = 0)].

The posterior of U1 can therefore be computed as

µU1(θ = 1|mB2 = 1) =
1× µ0

1× µ0 + [bSB2
(U1) × (1− rB2U1)× 1 + 2

7
× 0](1− µ0)

=
µ0

µ0 + bSB2
(U1)(1− µ0)(1− rB2U1)

.

For any rB2U1 ≥ 1− 1
bSB2

(U1)

µ0

(1−µ0)
, we will have µU1(θ = 1|m = 1) ≥ 1

2
. Similarly, it can

be shown that any rB2U5 ≥ 1− 1
bSB2

(U5)

µ0

(1−µ0)
is Full Communication Compatible.

Therefore, any fact-checking profile where

rB2U5 ≥ 1− 1

bSB2
(U1)

µ0

(1− µ0)
,

rB2U5 ≥ 1− 1

bSB2
(U5)

µ0

(1− µ0)
,

and rij = 0 on any other edge ij is Full Communication compatible.

It turns out that the procedure used in 2 can be generalized. FCC strategies can be
constructed in such a way for more complex network structure (notably if biased and unbiased
agents alternate on a single branch) and even if unbiased agents also fact-check themselves.
Proposition 1 formalizes this result.

Proposition 1. For any unbiased fact-checking strategy profile rU = (rij)i∈U , there exists
a minimum trust-inducing biased strategy profile (denoted rt

B), such that for any r′
B if

r′
B ≥ rt

B , then (r′
U , rB) is Full Communication compatible.

The proof for Proposition 1 is available in the Appendix. I fix an unbiased profile rU
and construct by iteration a Full Communication compatible biased profile rt

B, starting from
the ends of the tree and going toward the center. The iteration allows us to show that this
profile is uniquely defined and only depends on rU .
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It will be convenient for future analysis to define minimum trust inducing strategies as a
function of the underlying unbiased agents’ strategies. Let

rt
B :

{
[0, 1]|EU | → [0, 1]|EB|

rt
B(rU) = rB, with rB such that (rU , r

′
B) is FCC for any r′

B ≥ rB,

be a function that associates each rU to the corresponding biased minimum trust induc-
ing strategy.

Remark 1. Proposition 1 is not a full characterization of FCC strategies. Consider exam-
ple 2, we showed that rB2−U1 = 5

17
is consistent with FCC strategies. However, if biased

agents upstream of B2 were fact-checking themselves (for example, B3 was fact-checking
some amount), then B2 could decrease their fact-checking while still being believed by U1.
Intuitively, B2 can shift some of the fact-checking burdens it carries toward other agents up-
stream. Note, however, this the two profiles of FCC strategies are “essentially” equivalent, in
the sense that the cumulated fact-checking is the same, and the probability of a false message
spreading is constant.

4 The burden of proof

It is important that at this point FCC strategies are taken as exogeneous in the game. The
definition does not check if it is rational to play these strategies. The goal of this section
is (1) to understand when it is the case (2) how equilibrium strategies will vary with fact-
checking cost.

4.1 Characterization of Equilibrium

We provide further refinement of equilibria.

Definition 3. A standard FCE equilibrium is an FCE equilibrium where:

• ∀ij, rij > 0 only if i and j are of different types.

• Given rU , biased agents play exactly their minimum-trust-inducing strategy.

One interesting result to note is that, given the linear nature of the payoffs (with respect
to fact-checking strategies), unbiased agents can only “rationally” play 0 or 1 (said otherwise,
r ∈ (0, 1) is never a best-response to others play).

Proposition 2. In any standard FCE ((r, σ), µ), we have rU ∈ {0, 1}|EU | and rB = rt
B(rU).

We can use this Proposition in conjunction with the result from the previous subsection
to characterize the existence of Full Communication Equilibria. It turns out that the char-
acterization takes the form of (somehow technical) restriction on the network structure and
agents preferences.

Denote

g̃ =
maxi∈U(maxj∈Ni

( |Ui(j)|−1
N

)

minrU (maxj∈B(maxi∈Nj
(gji(G, rU)))

.
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Theorem 2. For all λU , λB such that λU

λB
≥ g̃, there is a c̄, such that for all c < c̄ there

exists a standard Full Communication Equilibrium.

Theorem 2 is proved in the Appendix. In this proof, I first define a restricted game
where agents are only allowed to play Full Communication compatible (FCC) strategies. I
show that this game’s strategy space is a closed non-empty convex space, and that payoff
functions are quasiconcave. Kakutani’s theorem implies that an equilibrium of this restricted
game exists for any cost of c. In the second part, I show that under the theorem conditions,
agents have no incentive to deviate from the restricted game’s equilibrium strategies even if
we allow them to play on the whole strategy space (i.e. if we lift restrictions).

4.2 Who is fact-checking

I now illustrate how the fact-checking cost affect the structure of FCE strategies. In par-
ticular, I document that when cost is very low, it is fact-checking performed by unbiased
agents that allow trust to exist in the network. On the other hand, when the cost is high, it
is fact-checking performed by biased agents that guarantee trust in the network.

Consider first the case c = 0. Theorem 3 states that free-fact checking leads to perfect
fact-checking from unbiased agents.

Theorem 3. If c = 0, then for all positive λU , λB, there exists a unique Full Communication
equilibrium. In this equilibrium unbiased agents perfectly fact-check all their edges (rij = 1
for all i ∈ U and j ∈ Ni).

A formal proof of Theorem 3 is available in the Appendix. With free fact-checking,
unbiased agents perfectly fact-check to learn the state. Biased agents, on the other hand,
fact-check their minimum trust inducing strategy, which is very low when unbiased agents
perfectly fact-check because there already is a large amount of trust in the network. Biased
agents minimize their fact-checking behavior because they face an indirect cost for fact-
checking: more fact-checking means that they are more likely to be caught lying.

A direct application of best-responses mechanics can give us a simple range of cost where
full communication can be implemented. Let us denote

g =
maxi∈U(maxj∈Ni

( |Ui(j)|−1
N

)

maxj∈B(maxi∈Nj
(gji(G, rU = 0))

.

When the network is fixed, g is a constant. It captures the ratio between unbiased
“risk” of not fact-checking (maximum number of agents misled) and biased opportunity of
fact-checking. Observe that

λB

λU

≥ g ⇐⇒ c ≤ c0.

The following theorem then follows from a direct application of Proposition 1.

Theorem 4. For all λU , λB, such that λU

λB
≥ g, there exists c̄, c, such that for all c ∈ [c, c̄] ,

there exists a Full Communication equilibrium in the fact-checking game where:

• Unbiased agents don’t fact-check.
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• Biased agents involved on problematic edges fact check with reliability:

rij = max(1− |Si(j)|
µ0

|Bunchk
i (j)|(1− µ0) + |N chk

i (j)|µ0
, 0).

A proof for Theorem 4 is available in the Appendix. The formula for biased fact-checking
is derived from Proposition 1. The theorem shows that when the cost of fact-checking is very
high, and biased agents are more motivated than unbiased agents, the burden of proof - the
amount of fact-checking needed to ensure Full Communication - is carried by biased agents.
One could think that fact-checking is to be used by truth-seeker agents, especially if the cost
is high. Here is a situation where fact-checking is used entirely as a device of persuasion and
not information gathering.

5 Conclusion

The spread of fake news throughout the coronavirus crisis has revealed that misinformation
does not only harm by disseminating false beliefs but also by barring useful information
to reach the population. Medical institutions and professionals had trouble broadcasting
their message and recommendations due to a widespread lack of trust on social media. In
this paper, I make a case for sender-driven fact-checking as a tool to restore trust and
solve communication failures in social networks. I use a simple tractable model developed in
Bloch et al. (2018) where agents strategically transmit a piece of information in a network.
In this setting, lack of trust prevents the diffusion of useful information in some parts of
the graph. I extend this setting by allowing agents to commit to fact-check any messages
they send up to the reliability of their choice. I show that there always exists a set of
trust-inducing fact-checking behavior that solves communication failures. Then, I establish
that for an appropriate cost of fact-checking agents will choose trust-inducing fact-checking
in equilibrium. Therefore, platform designers can use such sender-driven fact-checking to
restore trust and improve communication on social media. My paper also show that when
the cost of fact-checking is low, unbiased agents carry the “burden of proof” that restores
trust, i.e., fact-checks. On the other hand, when the cost is high, biased agents carry this
burden.

An important question that I was not able to tackle in this paper pertains to the welfare
implications of fact-checking. Are agents better off with fact-checking than when communi-
cation failures remain? If they are, which types of agents benefit from it? Is one type better
off than the other? The response to this question is not straightforward. The situation
with and without fact-checking both faces trade-off. Without fact-checking, any suspect
information is filtered out, at the risk of losing some useful information. With fact-checking,
any right information will reach be transmitted; there is a risk, however, that some wrong
information flows too.
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Appendix

Proof Structure Overview

The following diagram shows the logical dependencies between the main results proved in
this appendix. An arrow from A to B indicates that the proof of B uses result A.

Lem. 1 Lem. 2 Lem. 3

Prop. 4 Prop. 5 Prop. 2 Prop. 1 Prop. 3

Thm. 3 Thm. 2 Thm. 4

A.0. Preliminary Lemmas

The following lemmas establish key properties used throughout the main proofs.

Lemma 1: Unbiased agents play corner solutions

Lemma 1. Assuming all agents play Full Communication strategies in the second stage, if
i is an unbiased agent then either rij = 0 or rij = 1 dominates all other strategies.

Proof. In this proof, I first express the expected utility of any unbiased agent i as a function
of their fact-checking behavior. This function is linear in i’s strategies, implying that the
maximum excepted utility is obtained either playing 0 or 1.

Step 1: Express unbiased agents payoff as a function of their fact-checking behavior.

Take i an unbiased agent and fix the profile of other players fact-checking strategies,
that is r−i. Suppose that all agents (including i) play Full Communication strategies in the
second stage.

I want to express the ex-ante utility of i as a function of their fact-checking strategies,
that is ri, the vector of fact-checking from i on all edges they are connected to: ri = (rij)j∈Ni

.
I write this function as Ui(ri|r−i), where r−i is fixed:

Ui(ri|r−i) = E(ui(x, θ)|(ri, r−i)) = −λUE((x− θ)2|(ri, r−i))− c
∑
j∈Ni

rij.
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The expected payoff depends on x, the result of the vote, which itself depends on commu-
nication. There are three sources of uncertainty for x: the state of the world θ, the designated
source of the message, and the success or failure of each fact-checking device. The following
expression is a decomposition of E(ui(x, θ)|(ri, r−i)) using these different sources. I explain
how the decomposition works in the subsequent paragraph, using the following notations:

• ZSi(j)(r) is the number of vote for 1 in subset Si(j), when players play the strategy
profile r. This number is a random variable depending on how communication plays
out. Particularly, it depends on the success or not of the fact-checking device, which
itself depends on fact-checking strategies r.

• Bi(j) is the event “the source is a biased agent in Si(j)”.

With this notation, for a fixed r−i we get:

E(ui(x, θ)|(ri, r−i)) = µ0 × 0 + (1− µ0)×
(

1

N

B

N
+ (2)

∑
j∈Ni

[
Ui(j)

N
× B

N
+

Bi(j)

N

[1 + E(ZSi(j)(r−i)|θ = 0 ∩Bi(j))

N

+
∑

j′∈Ni\{j}

[
rij′(

Bi(j
′)

N
) + (1− rij′)

E(ZSi(j′)(r−i)|θ = 0 ∩ zi = 0 ∩mji = 1)

N

]]])
.

1. “µ0 × 0”: if θ = 1, then every source (unbiased and biased) will create a trustful
message equal to one. Every messenger will transmit, and because the message is true,
fact-checking devices will never block the message (this is true independently of fact-
checking strategies, because of the no false-positive assumption). Therefore, all agents
will get a message equal to 1 and therefore vote for 1 (remember that agents play in
Full Communication in the second stage). We get (x− θ)2 = 0.

2. “(1 − µ0) × . . . ”: if θ = 0, then biased agents will lie if they are the source, and the
spread of this lie will depend on fact-checking strategies. To assert x, I, therefore,
decompose the event again, depending on where the source is. The source can be on
any branch linked to i (or i itself). Each term of the biggest sum is a different branch.
If i is the source, then they create a message equal to 0, and only biased agents will
vote for one (this happens with probability 1

N
). If i is not the source, I decompose

further on each branch depending on if the source is biased or unbiased:

• “Ui(j)
N

× B
N
”: if the source is unbiased, then the message created will be 0. In this

case, all unbiased agents vote 0 (they either receive a message equal to 0 or the
message is blocked, and they vote according to their priors, which are favorable
to 0) and all biased agents vote 1. Hence, P (x = 1) = B

N
.

• “Bi(j)
N

[
. . . ”: if the source is biased, the message created will be equal to 1. Un-

biased agents who receive this message will misvote and lower E[(x − θ)2]. The
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extend of such agents depends on the spread of misinformation, which depends
on fact-checking strategies. I isolate branches on which i can have an impact by
fact-checking and branches on which they cannot.

– When agents play profile r,
E(ZSi(j)

(r)|θ=0∩Bi(j))

N
is the expected number of

votes for 1 inside of Si(j) knowing that the source is a biased agent in Si(j)
and θ = 0. Note that i cannot have an impact on this number: messages from
a source in Si(j) do not go through i to attain anyone in Si(j), ZSi(j) only
depends on the strategy of other players. Hence, for a fixed r−i, we can write
with a slight abuse of notation E(ZSi(j)(r)|θ = 0∩Bi(j)) = E(ZSi(j)(r−i)|θ =
0 ∩ Bi(j)). The additional 1 is i themselves: it is assumed that i cannot see
the result of their own fact-checking device.

– If the source is a biased agent in Si(j), i can impact anyone in ∪j′∈Ni
Sj′(i)

with her fact-checking strategies. For each fact-checked edge ij′, rij′ is the
probability the message is blocked by the fact-checking device. If this occurs,
only biased agents in Sj′(i) (Bj′(i)) will vote for 1. If not, then when agents
play r, E(ZSi(j′)(r−i)|θ = 0∩zi = 0∩mji = 1)) captures the expected number
of votes for 1 once the message has crossed ij′. Note that this is independent
of rij′ . Hence for any fixed r−i, we can write with a slight abuse of notation
E(ZSi(j′)(r)|θ = 0∩zi = 0∩mji = 1)) = E(ZSi(j′)(r−i)|θ = 0∩zi = 0∩mji =
1)).

• “Πj∈Ni
(1 − rij)

1
N
” represents the vote of i themselve. I assume that i (wrongly)

votes for 1 when

Step 2: Show that the maximum of Ui(ri|r−i) is obtain for rij ∈ {0, 1}, ∀j ∈ Ni.

By inspection, Ui(ri|r−i) is linear in rij for all j ∈ Ni. This implies that the maximum
Ui(ri|r−i) is obtain for rij ∈ {0, 1}, ∀j ∈ Ni.

Lemma 2: Biased agents play corner solutions

Lemma 2. Take j a biased agent and and denote r−j other agents’ fact-checking profile.
Assume that this profile is such that biased agents play at least their minimum trust inducing
strategy given the profile of unbiased agents (see Proposition 1). Assume a Full Communi-
cation equilibrium is played in the second stage. Then, for all i ∈ Nj and all r′ji ∈ [0, 1] we
have either:

Uj(rji = 0, r−j) ≥ Uj(r
′
ji, r−j)

or
Uj(r

t
ij(rU), r−j) ≥ Uj(r

′
ji, r−j),

where rtji(rU) is their minimum trust inducing strategy given rU , the fact-checking strate-
gies of unbiased agents in r−j.
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Proof. This proof is very similar to the proof of lemma 1: because of the linear nature of
payoffs, agents maximize their utility in corner actions.

The key difference is that there is a discontinuity in the return of a biased agents j fact-
checking strategy at rtji(rU , the minimum trust-inducing strategy of j when biased agents
play rU . This is the point where i’s posterior (the posterior of j’s neighbor) induced by this
strategy reaches 1

2
(see Proposition 1). When that happens, i changes their vote and trans-

mission strategy. The payoff function is therefore continuous (and linear) on two segments.
We therefore have three “corners”: 0, 1 and rtji(rU . We get a corner solution at rtji(rU that
dominates rji = 1.

Like in the proof of Lemma 1, I want to express the ex-ante utility of a biased agent j as
a function of their fact-checking behavior, before showing that this function is linear. Note
that j ex-ante utility will depend on their neighbor’s trust, i.e. if their neighbors believe j
when j sends a message equal to one. This is captured by j’s neighbor’s (i) posterior beliefs
when they receive a message equal to one: µi(mj = 1). Importantly, j can influence this
trust with their fact-checking strategy. To clarify this role, I first express ex-ante utility as a
function of j’s neighbors’ posteriors before traducing this in terms of fact-checking strategies.

Step 1: Expressing the ex-ante utility as a function of neighbors’ posteriors

I define the 1µi(mj=1)≥ 1
2
= 1 if µi(mj = 1) ≥ 1

2
and 0 otherwise. Note that this is not a

random variable. This is determined by the strategy profile, and in particular rij.

We have:

Uj(rj, r−j) = E(uj(x, θ)|(rj, r−j)) = −λUE((x− θ)2|(rj, r−j))−
∑
j∈Nj

c(rji).

Using the same notations as in the proof of Lemma 1, we can re-express this as:

E(uj(x, θ)|(rj, r−j)) = µ0 ×
∑
i∈Nj

Sj(i)

N

( ∑
i′Nj\i

(1− 1µi(mj=1)≥ 1
2
)
Uj(i

′)

N

)
+ (1− µ0)×

[
U

N

U

N
+

∑
i∈Nj

P (min
j (i) = 1|Bj(i) ∩ θ = 0)

×
( ∑

i′Nj\i

1µi(mj=1)≥ 1
2

Sj(i)− E(ZSj(i′)|θ = 0 ∩Bj(i))

N
+ (1− 1µi(mj=1)≥ 1

2
)
Uj(i

′)

N

)]
.

The computation of this expected utility follows the same reasoning as in Lemma 1: we
estimate the number of votes for one for each potential source. Remember that I assume
that, on all edges except the ones where j is involved, agents play minimum trust inducing
strategies. As Proposition 3 shows, this implies that all agents’ posterior beliefs on the
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receiving end of these edges are higher than one half. Said otherwise, all agents believe the
message they receive from edges where j is not involved.

1. “µ0 × . . . ”: if θ = 1, then every source (unbiased and biased) will create a trustful
message equal to one. Because biased agents other than j play minimum trust inducing
strategies, the message will circulate freely on all edges except the ones linked to j:
unbiased agents will believe the message they receive, and fact-checking devices will
not stop the message because of the no false-negative assumption. There is a chance,
however, that j’s neighbors do not believe him if their posteriors are lower than a half6.
If this is the case, then the message is blocked at that neighbor, and all unbiased agents
on the subbranch starting from that neighbor will vote for 0. The first sum corresponds
to branches where the message comes from: j cannot influence communication in this
branch because all agents of this branch got the message before him; hence all agents
vote 1 in this branch. The second sum branch corresponds to the downstream branch
coming out of j: unbiased agents will vote for 1 if the posterior beliefs are to low.

2. “(1− µ0)× . . . ”: if θ = 0, then biased agents will send a false message if they are the
source the spread of this message will depend on fact-checking strategies. Like in the
proof of Lemma 1, to assert x, I decompose the event depending on who and where
the source is. If the source is unbiased, then we know she will send a message equal
to 1, and all unbiased agents (and only them) will vote for 1 (they either received the
message or vote for their priors): we get U

N
U
N
. If the source is biased, she will vote for

0, and the number of votes depends on how this message spreads. Such a source can
be on any branch linked to j (or j itself). Each term of the biggest sum is a different
branch. For each branch, P (min

j (i) = 1|Bj(i)∩ θ = 0) is the probability that j receives
a message equal to 1 from that branch, knowing that the source is biased, this will
depend on the reliability of fact-checking devices upstream of j.

If j indeed receive a message, then they will transmit it. The number of final votes will
depend on if they are believed on the downstream edges or not. For all downstream
edges (second sum), if posteriors are high enough, the message will be trusted. The
exact number of votes for 0 (remember here that because of the quadratic preferences,
we are tracking j disutility, the number of people voting for 0 for biased agents) will
be determined by the reliability of down-stream fact-checking message, which is fixed
if we fix r−j. If the posterior is too low, then the message will be blocked, and all
unbiased agents in the downstream branch will vote for 0.

Step 2: Express ex-ante utility as a function of fact-checking strategies.

If beliefs are updated according to Bayes, we can get an expression of posterior beliefs
as a function of fact-checking strategies. Recall that min

i (j) = 1 is the event “i receives a
message equal to 1”, after the message has been fact-checked. mout

i (j) = 1 on the contrary, is

6This is a slight simplification. If j’s neighbor is biased, then she will ”believe” them in any case - even
if their posterior is low. Effectively, biased agents discard their beliefs. Unbiased agents down the chain will
not believe the message. ”Neighbor” could refer more precisely to the first unbiased agent on the downward
path from j.

24



the event, “j sends a message equal to 1 to i”, before the message is fact-checked. Posteriors
beliefs can be computed as:

µi(mj = 1) = P (θ = 1|min
i (j) = 1)

=
P (min

i (j)=1|θ=1)P (θ=1)

P (min
i (j)=1|θ=1)P (θ=1)+(1−rij)P (mout

j =1|θ=0)P (θ=0)
.

Note that P (min
i (j) = 1|θ = 1) = 1 if we assume Full Communication strategies in the

second stage (if θ = 1, all agent create a trustful message equal to 1 that is never blocked
by fact-checking devices). Then, we have:

µi(mj = 1) =
µ0

µ0 + (1− µ0)(1− rij)P (mout
j = 1|θ = 0)

. (3)

Remember now that rtji(rU denotes the minimum trust inducing strategy, i.e. the strategy
such that µi(mj = 1) = 1

2
(given r−j):

rtji(rU = 1− µ0

(1− µ0)P (mout
j = 1|θ = 0)

.

Note that the value of this minimum trust inducing strategy depends on other players’
strategies. Indeed, agents upstream of j can influence P (mout

j = 1|θ = 0) via their fact-
checking strategy: if they fact-check more a false message has a higher chance of being
caught before reaching j.

Clearly 1µi(mj=1)≥ 1
2
= 1 if rji ≥ rtji(rU and 0 otherwise. Therefore, the expected util-

ity can be expressed in continuous linear segments above and bellow rtji(rU (for each i ∈ Nj).

Step 3: Maximize expected utility.

Because payoffs are additively separable over each dimension (each rji for each neighbor
in Ni), we can carry out the maximization separably for each dimension. Having fixed r−j,
we can get the following expression for all r′ji > rtij(rU :

Uj(rji = r′ij)− Uj(rij = rtji(rU) = c× (rtji(rU − r′ji) ≤ 0,

with the inequality strict if c > 0. Hence it is strictly dominated to play above of the mini-
mum trust inducing fact-checking strategy.

Furthermore, for all r′ji < rtij(rU , we get

Uj(r
′
ji)− Uj(rji = 0) = c× (−rji) ≤ 0,

with the inequality strict if c > 0.
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The ordering of Uj(rij = rtij(rU) and Uj(rij = 0) is not known a priori.

Hence, for a fixed r−j, it is optimal for an agent to play either 0 or below their minimum
trust inducing fact-checking strategy. Note that we cannot express this result in terms of
dominant strategies because the precise value of rtij(rU depends on others strategy.

Lemma 3: Convexity of FCC strategy space

Lemma 3. The space of Full Communication Compatible strategies, defined as:

R̄ = {rij ∈ [0, 1], ∀ij ∈ E|rij ≥ rtij(rU) if i ∈ B}

is convex.

Proof. To show that R̄ = {rij ∈ [0, 1], ∀ij ∈ E|rij ≥ rtij(rU) if i ∈ B} is convex, I need to
show that the function rtji is convex for all ji such that j is biased.

Step 1: Formulating the problem.

Saying that rt
ji is convex is equivalent to say that for any r′

U , r
′′
U , and any λ ∈ [0, 1]:

rtji(λr
′
U + (1− λ)r′′

U) ≤ λrtji(r
′
U) + (1− λ)rtji(r

′′
U).

To simplify notation let’s rewrite that as:

rtji(r
mix
U ) ≤ λrtji(r

′
U) + (1− λ)rtji(r

′′
U). (4)

From Proposition 1:

rtji(rU) = 1− µ0

(1− µ0)PrU (m
out
i = 1|θ = 0)

,

where PrU (mj = 1|θ = 0) is the probability that j sends a message equal to one to i
when the state is 0, the source of the message is in Sj(i) and all other agents (other than j)
play profile (rU , r

t
B(rU)). This quantity depends on the probability that j himself receives a

message, which depends on fact-checking strategies upstream of ji.

Step 2: Simplifying the problem.

To simplify notations, let’s define the following function:

pij :

{
[0, 1]|EU | → [0, 1]
rU → PrU (mj = 1|θ = 0).

To determine the convexity of rtji, we need to characterize some properties of pij.
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Using the definition of rtji(rU) and pij, we can find a simpler formulation for (1). We get
that rtji is convex only and only if:

1

pij(rmix
U )

≥ λ

pij(r
′
U)

+
1− λ

pij(r
′′
U)

,

which we can rewrite as:

pij(r
mix
U ) ≤ pij(r

′
U)× pij(r

′′
U)

λpij(r′′
U) + (1− λ)pij(r′

U)
.

This condition is hard to prove in general. We can make the observation that

pij(r
′
U)× pij(r

′′
U)

λpij(r′′
U) + (1− λ)pij(r′

U)
≥ λpij(r

′
U) + (1− λ)pij(r

′′
U).

Let’s show why. Consider the sign of
pij(r

′
U )×pij(r

′′
U )

λpij(r′′
U )+(1−λ)pij(r′

U )
− λpij(r

′
U) + (1 − λ)pij(r

′′
U).

Multiplying by the first term denominator we can get the following simplification:

pij(r
′
U)× pij(r

′′
U)−[λpij(r

′′
U) + (1− λ)pij(r

′
U)][λpij(r

′
U) + (1− λ)pij(r

′′
U)]

= pij(r
′
U)pij(r

′′
U)2λ(1− λ) + pij(r

′
U)

2λ(1− λ) + pij(r
′′
U)

2λ(1− λ)

= λ(1− λ)(pij(r
′
U) + pij(r

′′
U))

2.

Because λ ∈ [0, 1] and (pij(r
′
U) + pij(r

′′
U))

2 ≥ 0, it is clear that the expression is positive.
Hence,

pij(r
′
U)× pij(r

′′
U)

λpij(r′′
U) + (1− λ)pij(r′

U)
≥ λpij(r

′
U) + (1− λ)pij(r

′′
U)

.

This means that
pij(r

mix
U) ≤ λpij(r

′
U) + (1− λ)pij(r

′′
U),

is a sufficient condition for (1), that is for the convexity of rtji. Indeed, if this condition is
true, we would have:

pij(r
mix
U ) ≤ λpij(r

′
U) + (1− λ)pij(r

′′
U) ≤

pij(r
′
U)× pij(r

′′
U)

λpij(r′′
U) + (1− λ)pij(r′

U)
.

Summing up what we did up until now, we get the following proposition:

If pij is a convex function for all ij, then R̄ is a convex space.

The rest of the proof shows that pij is indeed a convex function for all ij.

Step 3: Show that pij is a convex function for all ij.
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We can express pij in the following manner:

pji(rU) = PrU (m
out
j = 1|θ = 0)

=
∑

i′∈Bi(j)

1

|Si(j)|
Πrm∈i′→j(1− rmix

rm ),

where i′ → j is the set of all the edges (denoted by the indices rm) in the path from i′

to j. Because the network is a tree, this path is unique.
The reasoning behind this expression is the following. If we assume Full Communica-

tion strategy, and if j is biased, then j always sends a message equal to 1 if they get one.
PrU (m

out
j = 1|θ = 0) is therefore equal to the probability that he gets a message equal to 1.

If the state is 0 (as we assume it is), such an event can occur if only if a biased agent is the
source. For j to receive a message emitted by such a source, it must be that all fact-checking
devices between i and j fail, which is given by the probability

∏
rm∈i′→j(1− rmix

rm ) (
∏

is the
product operator). If we sum this overall potential biased source (weighting by the proba-
bility that they are indeed source), we get the expression above.

We want to show the convexity of this expression. It is easier to do with a slightly more
general framework. Consider a function f(x1, · · · , xn) = x1 × x2 · · · xn. If we can show that
this function is convex for xi ∈ [0, 1], then it means that the above expression is convex (the
sum of a convex function is convex). To do so, I will compute the Hessian matrix and show
that it is positive semi-definite.

The second order partial derivatives of f(.) can be computed as:

∂2f

∂xi∂xj

= x1x2 · · · xi−1xi+1 · · · xj−1xj+1 · · · xn =
f

xixj

.

Therefore the elements of Hessian are [H]ij =
f

xixj
. For an arbitrary vector v ∈ Rn

++ (strictly

positive real numbers) we have

vTHv =
∑
mn∈E

∑
kl∈E

f
vi
xi

vj
xj

(1− δij) > 0,

where δ(i− j) =

{
1 i = j

0 i ̸= j
.

vTHv is a positive on Rn
++, thus the Hessian is positive definite. This implies that the

function is strictly convex in Rn
++. In Rn

+ (including 0), one or more xi can be null, in which
case the Hessian is positive semi-definite, which implies that f(.) is weakly convex (and that
is enough for us!).

We have (1 − rmix
ij ) ∈ Rn

+ (for n = |E|), and we know that the sum of convex functions
is convex. Hence, we directly get that

∑
i′∈Uunchk

1
|Si(j)|Πµ∈i′→j(1− rmix

i′j ) is convex.
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Conclusion: I have showed that for any edge ij where i is biased, pij is convex. From step
2, this implies that for any two fact-checking profile r′

U and r′′
U , we have:

1

pij(rmix
U )

≥ λ

pij(r
′
U)

+
1− λ

pij(r
′′
U)

.

Traducing this in term of minimum trust inducing strategies from Step 1, this gives us:

rtji(λr
′
U + (1− λ)r′′

U) ≤ λrtji(r
′
U) + (1− λ)rtji(r

′′
U).

Plugging this into the definition of R̄, we obtain that R̄ is a convex space.

A.1. Full Communication Compatible Strategies

Proof of Proposition 1

Proof. This proof works by construction. For each edge ji, where j is biased, I construct
a function rt

ji(.), that only depends on rU . This function is such that i’s posterior (when
receiving a message equal to 1) are equal to 1

2
when computed with Bayes rule. A priori, i’s

posterior depends on the whole strategy profile of agents upstream of ji (i.e. in the graph
Gi(j)). However, if we assume that minimum trust inducing strategies are played in this
subgraph, these posteriors only depends on rji and rU . From this observation, I use an
iteration that starts at the end of the graph and progressively goes upstream to show that
rt
ji(rU) is well defined for all j.

Fix a profile of unbiased fact-checking strategies rU . Let’s express µi(mj = 1) as a
function of fact-checking strategies. Applying Bayes rule we have:

µi(mj = 1) ≥ 1

2
⇐⇒ µ0

µ0 + (1− µ0)(1− rij)P (mout
j = 1|θ = 0)

≥ 1

2
,

where P out(mj = 1|θ = 0) is the probability that j sends a message equal to 1 to i when
the state is 0. In such a case, i knows that the source is someone in Si(j) (it may be j
them-self or someone else).

Observe that we have:

µi(mj = 1) ≥ 1

2
⇐⇒ rji ≥ 1− µ0

(1− µ0)P (mj = 1|θ = 0)
.

This proves that for all biased agents j and given others’ strategies r−j, there exist a
minimum trust inducing value rt

ji = 1− µ0

(1−µ0)P (mj=1|θ=0)
such that i “believes” j.

To complete the proof, we need to show one additional feature. In principle one bi-
ased agent’s minimum trust inducing strategy depends on others biased agents strategy (via
P (mj = 1|θ = 0)). Consider two biased agents j and j′. It is not guaranteed that rtji and
rtj′i′ settles on a fixed point. Because of the tree nature of the network, such loops will not
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exist, however. We can define the profile rt
B iteratively starting at the end of the tree and

going toward the center. We will end up with a profile rt
B that only depends on unbiased

agents fact-checking rt
U . Let’s prove it formally with an iteration on k, the number of biased

agents upstream of a given edge ji (i.e. in Si(j)).

Initialization.

Take an edge ji such that there is 1 agents in Si(j). Then by definition there j is the
only biased agents in Si(j). Remember that P (mout

j = 1|θ = 0) denotes the probability that
j emits a message equal to 1 before herself has fact-checked. Hence, P (mout

j = 1|θ = 0) only
depends on the fact-checking behavior of unbiased agents rU , which implies that rt

ji only
depends on rU .

Iteration.

Suppose for a fixed k that for all edges j′i′ that have k or less biased agents in Si′(j
′),

rt
j′i′ only depends on rU . Suppose furthermore that such edges play there minimum trust

inducing strategy rj′i′ .

Consider on edge ji such that there is k + 1 biased agents in Si(j). P (mj = 1|θ = 0)
depends on the strategies of biased and unbiased agents in Si(j). Consider any edge j′i′

in Gi(j) such that j′ is biased. By the hypothesis, there are at most k biased agents in
Si′(j

′). Hence, P (m(j′) = 1|θ = 0) only depends on unbiased strategies. Furthermore, j′

minimum trust inducing strategy rt
j′i′ also only depends on rU (by hypothesis). Directly

P (mj = 1|θ = 0) (hence rt
ji) only depends on rU .

The iteration stops when rtji has been defined for all biased agents’ edges.

Final conclusion
In conclusion, we can define a unique profile rt

B(rU that depends only on unbiased agents
strategy such that for all edge ji where j is biased µi(mj = 1) ≥ 1

2
. By definition of Full

Communication, this implies that the profile (rt
B(rU), rU) is Full Communication compatible.

Proposition 3 The following special case characterizes FCC strategies when unbiased
agents do not fact-check. It is used in the proof of Theorem 4.

Proposition 3. Suppose a unbiased fact-checking strategy profile where unbiased agents don’t
fact-check (rU = (0, . . . , 0)). Suppose rB is biased strategy profile such that for all biased i
and all j ∈ Ni, we have for rij:

rij =

{
max(1− |Si(j)| µ0

|Bunchk
i (j)|(1−µ0)+|N chk

i (j)|µ0
, 0), if j is unbiased,

0 if j is biased.

Then (rU , rB) is Full Communication Compatible.
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Proof. This proof works by construction. For each edge ji, where j is biased, I define a mini-
mum trust inducing fact-checking value rt

ji(0) = max(1− |Si(j)| µ0

|Bunchk
i (j)|(1−µ0)+|N chk

i (j)|µ0
, 0).

I show that, when unbiased agents don’t fact-check, this value is such that i’s posterior
(when receiving a message equal to 1) are equal to 1

2
when computed with Bayes rule.

Fix a profile of unbiased fact-checking strategies rU . Let’s express µi(mj = 1) as a
function of fact-checking strategies. Applying Bayes rule we have:

µi(mj = 1) ≥ 1

2
⇐⇒ µ0

µ0 + (1− µ0)(1− rij)P (mout
j = 1|θ = 0)

≥ 1

2
,

where P out(mj = 1|θ = 0) is the probability that j sends a message equal to 1 to i when
the state is 0. The condition Si(j) is here to remind that in such a case, i knows that the
source is someone in Si(j) (it may be j themeself or someone else).

Observe that we have:

µi(mj = 1) ≥ 1

2
⇐⇒ rji ≥ 1− µ0

(1− µ0)P (mj = 1|θ = 0)
.

This proves that for all biased agents j and given others’ strategies r−j, there exist a
minimum trust inducing value rt

ji = 1− µ0

(1−µ0)P (mj=1|θ=0)
such that i “believes” j.

Assume that unbiased agents don’t fact-check (rU = (0, ...0)). For any edge ji denote k
the number of biased agents in Si(j). I will use an iteration on k to show that,

rtji(0) = 1− µ0

(1− µ0)P (mj = 1|θ = 0)
= max(1− |Si(j)|

µ0

|Bunchk
i (j)|(1− µ0) + |N chk

i (j)|µ0
, 0),

Initialization.

Take an edge ji such that there is 1 agents in Si(j). Then by definition j is the only
biased agents in Si(j). Remember that P (mout

j = 1|θ = 0) denotes the probability that j
emits a message equal to 1 before fact-checking. Furthermore observe that agents different
from j in Si(j) are all unbiased, therefore they don’t fact-check. We can therefore write,

P (mout
j = 1|θ = 0) =

1

|Si(j)|
.

Following definitions: |Bunchk
i (j)| = 1 and |N chk

i (j)| = 0. Hence, we directly have:

rtij(0) = max(1− |Si(j)|
µ0

|Bunchk
i (j)|(1− µ0) + |N chk

i (j)|µ0

, 0).

Iteration.

Suppose a fixed k. On all edges j′i′ that have k or less biased agents in Si′(j
′), suppose

rt
j′i′(0) = max(1 − |Si(j)| µ0

|Bunchk
i (j)|(1−µ0)+|N chk

i (j)|µ0
, 0). Suppose furthermore that such edges
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play there minimum trust inducing strategy rt
j′i′ .

Consider on edge ji such that there is k + 1 biased agents in Si(j). P (mj = 1|θ = 0)
depends on the strategies of biased and unbiased agents in Si(j). We can write:

PrU (m
out
j = 1|θ = 0) =

∑
i′∈Bi(j)

1

|Si(j)|
∏

mn∈i′→j

(1− rmn),

where i′ → j is the set of all the edges (denoted by the indices mn) in the path from i′ to
j. If the state is 0 (as we assume it is), j can transmit a message equal to 1 only if she gets
one. This occurs if only if a biased agent is the source. For j to receive a message emitted
by such a source, it must be that all fact-checking devices between i′ and j fails, which is
given by the probability

∏
mn∈i′→j(1− rmn) (

∏
is the product operator).

Assuming that unbiased agents don’t fact-check we know that all (1 − rmn) where m is
unbiased will be equal to one. Furthermore, assuming that biased agents in Si(j) play their
minimum fact-checking strategy, we know that if r is biased, then 1 − rmn = 1 − rtmn(0).
Following definition, observe that if m ∈ Bunchk

i (j), then rtmn(0) = 0. Hence, we can make
this first simplification:

P (mout
j = 1|θ = 0) =

Bunchck

|Si(j)|
+

∑
i′∈Bi(j)\Bunchck

1

|Si(j)|
∏

mn∈i′→j

(1− rmn).

Consider now the second term of this expression. Observe that each edge j′i′ ∈ N chck,
we have P (mout(j′) = 1|θ = 0 ∩ S′i(j′)) =

∑
i′∈B′

i(j
′)

1
|S′

i(j
′)|
∏

mn∈i′→j(1− rmn).

We can therefore write:

P (mout
j = 1|θ = 0) =

Bunchck

|Si(j)|
+

∑
i′∈N chck

1

|Si(j)|
P (mout(j′) = 1|θ = 0).

Observe furthermore that from the iteration hypothesis, for all biased j′ in N chck, we
have:

P (mout(j′) = 1|θ = 0) =
µ0

1− µ0

.

Plugging this into the previous equation, we obtain:

P (mout
j = 1|θ = 0) =

Bunchck

|Si(j)|
+

∑
i′∈N chck

1

|Si(j)|
µ0

(1− µ0

,

or,

rtij(0) = 1− |Si(j)|
µ0

|Bunchk
i (j)|(1− µ0) + |N chk

i (j)|µ0

Because |Si(j)| µ0

Bunchk(1−µ0)+N chkµ0
is not necessarily non negative, we can write rtij(0) =

max(1− |Si(j)| µ0

Bunchk(1−µ0)+N chkµ0
, 0).

This iteration stops when rtji(0) has been defined for all biased agents’ edges.
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A.2. Best Response Characterization

The following propositions characterize agents’ best responses under Full Communication
equilibrium conditions. They are used in the proofs of the main existence theorems.

Proof of Proposition 4

Proposition 4. For any (λu, λB), there exists a cost c = λU maxi∈U(maxj∈Ni
( |Ui(j)|−1

N
)), such

that if c ≥ c, no unbiased agents fact-check (in dominant strategy).

Proof. Lemma 1 states that unbiased agents play r = 0 or r = 1 in dominant strategies. For
a given edge ij, the choice of rij = 0 or rij = 1 will be determine by the sign of

Ui((ri,j = 0, r−i))− Ui((ri,j = 1, r−i)).

Using the formula for Ui in the proof of Lemma 1, we can express this difference like
this:

Ui((ri,j = 0,r−i))− Ui((ri,j = 1, r−i))

= −(1− µ0)λU (
∑

j′∈Ni\{j}

[E(ZSi(j′)(r−i)|θ = 0 ∩ zi = 0 ∩mji = 1)

N
− Bi(j

′)

N

]
) + c× 1.

Note that:
E(ZSi(j′)(r−i)|θ = 0 ∩ zi = 0 ∩mji = 1) ≤ |Si(j

′)|.

Indeed, the maximum number of people who can vote for 1 in Si(j
′) is the number of people

in that subset: |Si(j
′)|.

This means that:

− λU (
∑

j′∈Ni\{j}

|Si(j
′)| − |Bi(j

′)|
N

)) + c = −λU (
∑

j′∈Ni\{j}

|Ui(j
′)|

N
)) + c ≤ 0,

is a sufficient condition for Ui((ri,j = 0, r−i)) ≤ Ui((ri,j = 1, r−i)).
Rewritting, Ui((ri,j = 0, r−i)) ≥ Ui((ri,j = 1, r−i)) if

c ≥ λU
|Ui(j)| − 1

N
.

If this condition is satisfied then agent i plays 0 in dominant strategy.

Finally, we write c = λU maxi∈U(maxj∈Ni
( |Ui(j)|−1

N
). If c ≥ c, then all unbiased agents will

chose r = 0 on all of their edges.
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Proof of Proposition 5

Proposition 5. For any (λB, λU) and a fixed unbiased fact-checking profile rU , there exists a
c̄rU = λB maxj∈B(maxi∈Nj

(gji(G, rU)) that depends on λB and rU such that for any c ≤ c̄rU ,
biased agents best response to rU with their minimum trust inducing strategy.

Proof. Suppose unbiased agents plays a fixed strategy-profile rU . Lemma 2 states that, given
this unbiased fact-checking strategy profile, biased agents will either not fact-check, or play
minimum trust inducing profile.

Consider j biased and their strategy rji. We want to show that j prefers rtji(rU to rji = 0.

From the expressions of ex-ante utility in the proof of Lemma 2 we can write:

Uj(rji = rtji(rU , r−j)− Uj(rji = 0, rji) =

− c× rtji(rU − λB(µ0

∑
i′∈Nj\i

S ′
i(j)

N
× (−1)

Uj(i)

N

+ (1− µ0)
∑

i′∈Nj\i

P (min
j (i′)) = 1|Si′(j) ∩ θ = 0)

× (
(1− rtji(rU)(Sj(i

′)− E(ZSj(i)(r−j)|θ = 0 ∩ Si(j))− Uj(i)

N
).

Suppose that minimum truth inducing is played by every other biased agents. Note that,
from proposition 3 , E(ZSj(i′)(r−j)|θ = 0 ∩ Bj(i)), P (min(i′)) = 1|Si′(j) ∩ θ = 0) and rtji(rU
are uniquely determined by the network structure and rU

7. Hence, we have:

Uj(rij = rtij(rU) ≥ Uj(rji = 0) ⇐⇒ c ≤ λBgji(G, rU),

where gji(.) is some function of the network structureG and unbiased fact-checking profile rU .

Let c̄rU = λB maxj∈B(maxi∈Nj
(gji(G, rU)).

If c ≤ c̄rU , then no biased agents have incentive to deviate from minimum trust inducing
strategy.

Proof of Proposition 2

Proof. Consider a standard Full Communication Equilibrium ((r, σ), µ). By Proposition 4,
unbiased agents’ best responses are corner solutions, hence rU ∈ {0, 1}|EU |. By Proposition
5, biased agents best respond with their minimum trust-inducing strategy when costs are
sufficiently low. In a standard FCE, by definition, biased agents play exactly their minimum
trust-inducing strategy, so rB = rt

B(rU).
7Because we assume minimum trust inducing strategies, r−j is pinned down by rU

34



A.3. Full Communication Equilibria

Proof of Theorem 3

Proof. I show that the fact-checking profile (1U , r
t
B(1U)), where 1U are unbiased fact-checking

strategies where they all fact-check and rt
B(1U) is biased minimum trust-inducing strategies

induced by the unbiased profile, holds as a PBE.
By backward induction, I first show that there is no incentive to deviate in the second

stage if we assume that equilibrium fact-checking strategies are played in the second stage.
Then, I show that given second stage play, there is no incentive to deviate in the first stage.

Step 1: Deviation in the second stage
Consider the fact-checking strategy profile (1U , r

t
B(1U)). According to Proposition 1, such

a profile is Full Communication compatible. By definition, this implies that agents do not
have the incentive to deviate for Full Communication equilibrium in the second stage.

Step 2: Deviation in the first stage

Unbiased agents. Assume agents play the fact-checking strategies (1U , r
∗
B) and Full Com-

munication strategies in the second stage. Consider any unbiased agent i. From Lemma 2,
we know that unbiased agents will play either 0 or 1 depending on the sign of

Ui((ri,j = 0, r−i))− Ui((ri,j = 1, r−i)).

With c = 0, we have:

Ui((ri,j = 0,r−i))− Ui((ri,j = 1, r−i))

= −(1− µ0)λU (
∑

j′∈Ni\{j}

[E(ZSi(j′)(r−i)|θ = 0 ∩mji = 1)

N
− Bi(j

′)

N

]
)).

But for all j′ ∈ Ni, we have:

E(ZSi(j′)(r−i)|θ = 0 ∩mji = 1) ≥ Bi(j
′).

Indeed, E(ZSi(j′)(r−i)|θ = 0 ∩ mji = 1) is the expected number of agents voting for 1
when i transmitted a false message. Because we assume Full Communication strategies,
biased agents will always vote for 1 whatever their beliefs are. Hence, we necessarily have
E(ZSi(j′)(r−i)|θ = 0 ∩mji = 1) ≥ Bi(j

′). This implies:

Ui((ri,j = 0, r−i)) ≥ Ui((ri,j = 1, r−i)).

Note that this inequality will often be strict because it is likely that some unbiased agents
will believe that message spread by i when she does not fact-check it and vote for 1. Indeed,
it is assumed throughout the paper that agents cannot see the outcome of their fact-checking
device. An unbiased agent receiving a message equal to 1 (and believing it) will vote for 1
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even if their fact-checking device intercepts the message. Unbiased agents likely believe such
messages if all unbiased agents perfectly fact-check.

This implies that i cannot increase their payoff by deviating from perfectly fact-checking.

Biased agents. Suppose c = 0, that agents play equilibrium strategies and consider a
biased agent j. Because c = 0, Proposition 5 applies, and j best-response to other agents
strategies is their minimum trust-inducing strategy. Hence, j has no incentive to deviate
either.

Proof of Theorem 2

Proof. Existence of equilibrium in the FCC-restricted game. Suppose an instance
of the game with graph G, preferences λB and λU and cost c. Let R̄ be the set of Full
Communication Compatible actions:

R̄ = {rij ∈ [0, 1], ∀ij ∈ E|rij ≥ rtij(rU) if i ∈ B}

If fact-checking actions are played in R̄, then Full Communication strategies form an
equilibrium of the second-stage for any play of the first-stage (any fact-checking). We can
redefine the game as a simultaneous complete information game if we assume that agents
play this equilibrium in the second stage. In such a game, the payoffs from a strategy profile
are the expected payoff agents would get if this strategy profile was played in the first stage,
and full communication strategies were played in the second stage.

We write BR : (rB, rU) → (rB, rU) the best-response correspondence of this restricted
game.

I use Kakutani’s theorem for continuous games to show that this correspondence has a
fixed-point (see, for example, Theorem 1.2. in Fudenberg & Tirole (1991)). To apply this
result, I need to prove that the action space is non-empty, convex, and compact and that
payoffs are continuous and quasiconcave in actions.

• Consider any fact-checking profile rB = 1 where all biased agents fact-check perfectly.
Because minimum trust-inducing strategy always exists in [0, 1] (from Proposition 1),
we necessarily have (rU ,1) ∈ R̄ for any rU . Hence R̄ is non-empty.

• Convexity: Lemma 3 bellow shows that R̄ is convex.

• Compacity. As a closed and bounded subset of Rn, R̄ is compact.

• On R̄, the payoff functions are continuous and linear, hence quasiconcave.

Applying Kakutani’s theorem, we get that there is at least one equilibrium of the re-
stricted game, that we write (r∗

U , r
∗
B). Observe that an equilibrium exists for any instance

of the game, and in particular, for any c ≥ 0.
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Equilibrium in the non-restricted game. In this second part, we fix the strategies
(r∗

U , r
∗
B) obtained in the previous step, and consider how agents best respond to these strate-

gies if we allowed them to play on the whole strategy space. I will show that, if the theorem
conditions are respected, then no agents have incentive to deviate from (r∗

U , r
∗
B).

Step 1: Unbiased agents deviation

Let us first consider unbiased agents. Observe that even in the restricted game, unbiased
agents can play on their full scope of action [0, 1]. Therefore, unbiased agents’ best-response
will not change if we move to the unrestricted game. This is true for any c.

Step 2: Biased agents deviation

Let us now consider the biased agents’ best response. Remember that from Proposition
4, we know that unbiased agents either play 0 or their minimum trust inducing strategy
(which can be 0). In a Full Communication Equilibrium, biased agents play their minimum
trust inducing strategy. We therefore only need to check that biased agents are not willing
to deviate towards 0. In the following when I write “biased agents are willing to fact-check”
I mean that they play their minimum trust inducing strategy.

According to Proposition 4, for all c ≤ c̄r∗
U
, biased agents best respond to r∗

U by their
minimum trust inducing strategies, i.e. rt

B(r
∗
U) ∈ BR(r∗

B).

Using this fact, I will expose several conditions under which the equilibrium holds. I will
proceed in the following way:

1. I show that there is a maximum cost, cM , under which biased agents are willing to
fact-check whatever is the fact-checking behavior of unbiased agents.

2. I show that there is a minimum cost, c, above which unbiased agents will always choose
a fact-checking of 0.

3. I present a condition such that c ≤ cM .

4. I conclude that when this condition is satisfied there is a maximum cost c̄ ≥ cM such
that biased agents are willing to fact-check for all cost smaller than c0, where c0 is the
maximum cost biased agents are ready to pay when they know that unbiased agents
do not fact-check.

Step 2.1: Condition 1 - maximum cost for fact-checking in dominant strategy.

If c ≤ minrU (c̄rU ), then we must have c ≤ c̄r∗
U
, hence biased agents do not have incentive

to deviate. Writing cM = minrU (c̄rU ) and taking step 1 into account, we can sum this up
with the following condition:

If c ≤ cM then (r∗
U , r

∗
B) holds as an equilibrium in the unrestricted game.
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Step 2.2 Minimum cost for no unbiased fact-checking.

Proposition 2 (on best response of unbiased agents), states that there exist a cost

c = λU maxi∈U(maxj∈Ni
( |Ui(j)|−1

N
), such that if c ≥ c, no unbiased agents fact-check (in

dominant strategy).

Step 2.3 Condition 3 - Ordering of c and c̄.

We want to find a condition such that c ≤ cM . If this inequality is true, then it means
that, as we increase cost, unbiased agents will stop fact-checking before biased agents stops
fact-checking in dominant strategy. Using the expression for c and cM we can write:

c ≤ cM ⇐⇒ λU max
i∈U

(max
j∈Ni

(
|Ui(j)| − 1

N
) ≤ min(λB max

j∈B
(max
i∈Nj

(gij(G, rU)))

⇐⇒ λB

λU

≥
maxi∈U(maxj∈Ni

( |Ui(j)|−1
N

)

minrU (maxj∈B(maxi∈Nj
(gij(G, rU)))

.

For simplicity, let’s write g̃ =
maxi∈U (maxj∈Ni

(
|Ui(j)|−1

N
)

minrU (maxj∈B(maxi∈Nj
(gij(G,rU )))

. The nominator only depends

on the number of unbiased agents in each branch, hence it only depends on the network
structure. The denominator depends on gij(.) who depends on network structure and rU .
But since we choose the value rU that minimize it, it only depends on the network structure.
Therefore, for a fixed network, g̃ is a constant.

Conclusion of step 2.

From the previous step, there exists a ḡ, that only depends on network structure, such
that c ≤ cM iff λB

λU
≥ ḡ. Going back to the definitions of c and cM , this means that unbiased

agents stop fact-checking before biased agents stop fact-checking in dominant strategy. We
can look at what happens on each side of c now:

• For any c ≤ c, we also have c ≥ cM . Therefore, we can be sure that biased agents will
play fact-check in dominant strategy. Said otherwise, they best respond to r∗

U by their
minimum trust inducing strategies.

• For c ≥ c, we might be worried that c ≥ cM and that biased agents do not want to
fact-check in dominant strategy. We know that unbiased agents play 0 in the dominant
strategy. Hence for any equilibrium we found in the restricted game, we have r∗

U = 0
(as a vector). Going back to the beginning of step 1, we said that from Proposition 5,
for all c ≤ c̄r∗

U
, biased agents will best respond to r∗

U by their minimum trust inducing
strategies. Hence, if c is such that c ≤ c ≤ c0 (where c0 is the maximal cost defined in
Proposition 2 when we assume that unbiased agents fact-check 0), then biased agents
best respond with their minimum trust inducing strategy.
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Hence, if λB

λU
≥ ḡ and for any c < c0, biased agents have no incentive to deviate from the

restricted game equilibrium even if allowed to play in the unrestricted strategy space.

General conclusion.

In the first part of this proof, I have shown that if we restrict the strategy space to Full
Communication Compatible strategies, then an equilibrium exists. In the second part, I
start from this point (equilibrium of restricted game) and relax restrictions on the strategy
space. I first remind that unbiased agents do not have an incentive to deviate from this point
because their strategies were not restricted in the first place. Then I show if the following
conditions are met:

1. λB

λU
≥ ḡ and,

2. c ≤ c0,

then biased agents do not have incentives to deviate even if we allow them to play on the
whole strategy space.

Proof of Theorem 4

Proof. We write:

g =
maxj∈B(maxi∈Nj

(gij(G, rU = 0))

maxi∈U(maxj∈Ni
( |Uij|−1

N
)

.

Suppose λB

λU
≥ g. If we denote c̄ = c̄0 the maximum cost that induces biased agents to

play minimum trust inducing strategies when unbiased agents don’t fact check (see lemma
5), the condition implies that c < c̄.

Consider now a cost c ∈ [c, c̄]. From lemma 4, we know that unbiased agents do not
fact-check in dominant strategies. Furthermore, because c ≤ c̄, we know that biased agents’
best response to this unbiased fact-checking profile will be their minimum trust inducing
strategies. Applying the formula for minimum trust inducing strategies when unbiased agents
do not fact-check from 3 gives the result.
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