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Abstract

Motivated by new evidence from the 2023 U.S. regional bank crisis, I develop a
theory of how depositor social structure influences bank runs. Rumors about bank
financial health spread via interpersonal communication, triggering withdrawals that
may lead to collapse. I show that the occurrence, speed, and scale of runs depend
on depositor connectedness—the likelihood that agents know and communicate with
each other. Higher connectedness accelerates information spread, making runs faster
and more severe. In contrast, dispersed depositor bases slow down runs, and can even
prevent them entirely.
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1 Introduction

The regional bank failures of March 2023 astonished observers with their extraordinary scale
and speed. While previous large-scale runs on Continental Illinois and Washington Mutual
lasted an estimated ten and sixteen days (Rose 2023), the run on Silicon Valley Bank led to
its collapse in less than one. Why was this time different? In an essay placing the collapse
in historical perspective, Federal Reserve historian Jonathan Rose (2023) writes: “The most
significant departure from historical comparisons is that depositors were unusually connected
or similar to each other. As a result, they withdrew in a coordinated or similar way.”

Coordination has been central to bank-run theory since Diamond and Dybvig (1983),
whose model features multiple equilibria driven by self-fulfilling beliefs. Rose’s use of the
word coordinated, however, suggests something different. He employs it adverbially—qualifying
how agents withdrew—implying that coordination is not merely a binary switch between
good and bad equilibria but a process. In his reading, what made 2023 unusual was not
simply that depositors ran; it was the way the run diffused through the depositor base.

The idea that withdrawal behavior spreads through interpersonal channels is well doc-
umented empirically. Kelly and O Grada (2000) show that during the 1854 and 1857 New
York bank runs, Irish immigrants’ social networks played a central role in shaping the runs:
withdrawal decisions traveled along diasporic ties. Iyer and Puri (2012) similarly find that
during a regional bank run in India, an individual’s withdrawal probability rises when neigh-
bors and acquaintances withdraw, even after controlling for depositor characteristics.

If withdrawal behavior propagates through social connections at the individual level, then
the structure of those connections ought to matter for bank-level fragility. This is the broader
implication of Rose’s interpretation, and it is consistent with what the 2023 crisis appeared
to reveal: institutions whose deposits were concentrated among a few highly interconnected
clients—such as SVB—experienced sharper and more sudden withdrawals than peers with
more diffuse depositor bases. As I show in the empirical motivation in Section [2 these
differences persist even after controlling for balance-sheet fundamentals. Taken together,
the evidence suggests that depositor social structure may be an independent force shaping
run dynamics.

But how exactly does the aggregation from individual social ties to bank-level run risk
operate? Would rational depositors take the social structure of their peers into account when
deciding whether to run? The SVB episode, and Rose’s perspective of it, suggest that tighter
depositor ties could intensify panics. But does the converse hold—does a more dispersed
or weakly connected depositor base meaningfully slow withdrawals? Can it prevent runs
altogether? These questions cannot be settled with empirics alone and require a model.

Most theories of runs, however, do not model the process through which depositors coor-
dinate, making it difficult to evaluate how social structure shapes run dynamics. My paper
adresses this limitation by developing a model in which information diffuses through inter-
personal communication. Agents learn about potential runs from others and decide when to
withdraw based on their beliefs about both bank fragility and how many others they expect
to have learned. The interplay between information diffusion and belief updating generates
testable bank-level dynamics: a more dispersed depositor base can slow runs and even pre-
vent them.



The model I develop builds on Abreu and Brunnermeier (2003) and He and Manela
(2016)’s frameworks of sequential awareness in bubbles and runs. It features a continuum
of depositors and a single bank. Depositors derive utility from deposits in the form of
convenience flows (interest-bearing deposits are introduced as an extension) but face the
risk of losing their funds in a bank collapse[] The bank is subject to solvency shocks that
arrive at a Poisson rate. These shocks can leave the bank in one of two states: fragile or
healthy. A fragile bank can sustain only a fraction x of withdrawals before collapsing; a
healthy bank can withstand any level of withdrawals—the shock was a false alarm.

Crucially, agents do not learn about the shock simultaneously. Instead, information
spreads gradually through social contacts. I model this diffusion process explicitly using a
tool from mathematical epidemiology: the Susceptible—Infected (SI) process, widely used
to model disease transmission. Agents meet each other at rate ; when an uninformed
agent meets an “informed” one, they learn about the shock. This generates logistic diffusion
dynamics: information initially accelerates as more agents become aware, then decelerates
as the informed population saturates. Agents receiving information learn that a shock has
occurred but cannot observe whether the bank is fragile or healthy. Cases in which the shock
leaves the bank healthy can thus be interpreted as false rumors—information spreads about
a solvency shock that poses no actual threat.

The meeting rate [ is the key structural parameter governing coordination frictions—that
is, how readily information spreads among depositors. It captures the intensity of interper-
sonal communication and can arise from various sources: geographical deposit concentration
(the measure I use for the motivational evidence in Section [2)), social media exposure (Cook-
son et al. [2023), or any channel affecting the speed of information diffusion. A higher g
implies faster information transmission and thus lower coordination frictions, which I show
makes banks more vulnerable to runs in equilibrium.

Coordination frictions matter not only because they determine how quickly information
spreads, but also because they discipline how rational depositors update their beliefs and
time their actions. When agents learn about a potential solvency shock, they must decide
when to withdraw—or when to return if they come to believe the rumor was false. Their
decision depends on beliefs about both the bank’s true state and the anticipated withdrawal
behavior of others. Solving this problem in full generality is intractable, so I focus on a
natural subset of equilibria—stationary equilibria—in which agents’ strategies depend only
on the time elapsed since learning, not on calendar time. Each moment after becoming
informed, a depositor faces a dynamic trade-off: holding deposits for longer provides utility,
but continued exposure increases the risk to be caught in a crash. The key statistic governing
this decision is the perceived instantaneous crash probability, or hazard rate.

The hazard rate can be decomposed into two components: the conditional probability
that a fragile bank collapses, which rises with withdrawal pressure, and the posterior be-
lief that the bank is indeed fragile. These two components evolve in opposite directions,
creating rich dynamics. On the one hand, an agent anticipating the collapse understands
that more depositors will learn about the shock and withdraw, raising the conditional crash
probability. On the other hand, the bank’s continued survival provides Bayesian evidence

! As discussed in Section |4} one can interpret deposit utility directly as a risk-tolerance threshold below
which agents are willing to remain in the bank.



that the shock was likely a false rumor. Beliefs about fragility therefore decline over time. In
the period immediately following agents’ learning, the first force dominates: anticipation of
rising withdrawal pressure overwhelms any improvement in beliefs, so the combined hazard
rate increases, prompting agents to withdraw if the risk exceeds the utility benefits. But
as survival evidence accumulates and the logistic learning curve saturates—decelerating in-
formation flow—the second force takes over. Agents who withdrew earlier now rationally
reenter, confident the rumor was false. This decomposition generates hump-shaped aggregate
withdrawal dynamics—withdrawals rise as panic spreads, then fall as confidence rebuilds,
pushing reentry.

The recovery mechanism distinguishes my model from prior dynamic run theories. He and
Manela (2016) also feature false rumors, but their assumption of exponential learning implies
monotonically increasing hazard rates—panic can only accelerate, never abate. (Abreu and
Brunnermeier (2003) similarly generate only monotonic hazard rates.) My logistic learning
assumption, by contrast, generates natural saturation: as most agents become informed, in-
formation spread decelerates, allowing survival evidence to dominate and triggering recovery.
This prediction aligns with evidence from the 2023 crisis: Cipriani et al. (2024) document,
using Federal Reserve regulatory data, that most banks surviving the initial run saw deposit
levels return to near pre-crisis levels by summer 2023.

The model’s central result is an existence threshold for runs. Because withdrawn agents
eventually reenter as crash fears subside, aggregate withdrawals necessarily peak and then
decline if the bank survives. The height of this peak depends critically on depositor connect-
edness # and on deposit utility. When depositors are dispersed, information spreads slowly
and withdrawals are staggered over time, lowering the peak of simultaneous withdrawals.
Conversely, rapid diffusion compresses withdrawals in time, raising the peak. There exists
a critical threshold: when connectedness is sufficiently low, peak withdrawals remain within
the bank’s solvency capacity. In that case, runs become impossible— even at the height
of panic, withdrawals never breach solvency, eliminating any incentive to run. Conversely,
concentrated depositor bases—Ilike SVB’s—imply low coordination frictions that make runs
not just faster but more severe.

Deposit utility shapes recovery dynamics in a similar way. When deposits are attractive,
agents reenter quickly to enjoy their benefits despite remaining crash risk, reducing the
number of agents withdrawn at any given moment and lowering the peak. Normatively, this
suggests that enhancing deposit attractiveness can serve as a viable run-prevention policy.
However, as I show in Section |5| the effectiveness of such measures depends on the underlying
social structure of depositors, (.

The model’s tractability enables structural estimation. As a methodological exercise, I
illustrate this by fitting the model’s closed-form withdrawal path to intraday stock returns
during the March 2023 crisis. This allows me to recover bank-specific estimates of depositor
connectedness 5 and other model parameters directly from observed price movements. The
approach complements the balance-sheet and network-based proxies used in Section [2] to
motivate the model. Rather than measuring these parameters independently, the structural
estimates reveal them as implicit forces shaping market outcomes during the crisis. I then
test whether the original proxies correlate with the structural parameters and find that they
do, suggesting that the model provides a useful organizing framework for understanding
cross-sectional differences—though I emphasize this as an illustrative exercise demonstrating
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tractability rather than a definitive empirical test.

Three extensions, solved numerically, enrich the baseline framework. First, I allow for
heterogeneous learning speeds across different groups of depositors. In equilibrium, well-
connected agents time withdrawals strategically, while poorly connected ones need to exit
immediately, creating inequality in run exposure and generating asymmetric recovery dy-
namics. Second, I extend the model to incorporate interest-bearing deposits. Higher deposit
rates encourage earlier reentry and lower peak withdrawals, making rate increases an effec-
tive run-prevention tool—Cipriani et al. (2024) document that many banks raised rates to
moderate outflows during the 2023 crisis—though effectiveness still depends on coordina-
tion frictions. Third, I replace the “word-of-mouth” information diffusion assumption from
the baseline with a social-learning environment in which agents learn by observing others
withdrawals.

Literature review. Understanding how depositors coordinate on bank runs has been a
central question in banking theory since Diamond and Dybvig (1983)). My paper is part
of an established branch of this literature that focuses on the dynamics of coordination.
Dynamic aspects were first brought into the Diamond-Dybvig model through sequential
service constraints (Green and Lin (2003), Peck and Shell (2003]), Gu (2011)). More recent
efforts model run dynamics in tractable frameworks using alternative models: He and Xiong
(2012), for example, introduced a dynamic debt run model based on firm debt rollover.

Within that last strand, I am particularly indebted to He and Manela (2016)), which itself
builds on Abreu and Brunnermeier (2003). The latter introduced “sequential awareness” in
the context of rational bubbles: agents become aware of the bubble sequentially but are
uncertain about their position in the sequence, gambling that they are early enough to delay
exit and thereby preventing standard backward inductionE] He and Manela (2016]) adapted
this framework to bank runs, introducing uncertainty about whether the bank is fragile or
healthy and allowing agents to acquire additional noisy information. My paper retains the
fragile-versus-healthy uncertainty but replaces information acquisition with explicit model-
ing of information diffusion using Susceptible-Infected (SI) epidemiological dynamics. This
modeling choice incidentally shift focus to recovery: after observing no crash for sufficient
time, agents rationally infer the bank is likely healthy and reenter. These recovery dynamics
feed back into the run phase itself—if coordination frictions or deposit utility push agents
to reenter early enough, runs can be eliminated entirely even at fragile banks.

Empirical evidence supports the importance of social structure in coordinating depositor
behavior. Already mentioned are the studies of Kelly and O Grada (2000) and Iyer and
Puri (2012) on depositor networks in specific bank run episodes. Kiss et al. (2014) provide
experimental evidence of similar mechanisms. Schmidt et al. (2016) discuss the informational
advantage of institutional investors during the 2008 runs on Money Market Funds, and Liu et
al. (2023) highlights the role of online exposure during the Terra Luna run. Finally Cookson
et al. (2023) and Benmelech et al. (2024) provide similar evidence during the 2023 runf| My
paper complements this empirical work by developing a theoretical framework that shows
how micro-level social interactions aggregate to determine bank-level run dynamics.

2This type of game is sometimes referred to as a “clock game” (Brunnermeier and Morgan (2010)).
3See Section [2] for a detailed discussion on the empirical literature on the 2023 regional banking crisis.



Methodologically, my paper contributes to the literature on network diffusion in eco-
nomics. This literature includes models of learning and opinion formation (Golub and Jack-
son (2010))) and network games (Calvé-Armengol et al. (2015), Galeotti et al. (2020)). Most
directly, I build on Jackson and Lopez-Pintado (2011), Lépez-Pintado (2006)), Lépez-Pintado
(2008), and Loépez-Pintado (2012), who applied mean-field epidemiological approximations
developed by Pastor-Satorras and Vespignani (2001) to model product adoption as disease
transmission. The critical distinction is that in those papers agents are mostly concerned
with a coordination problem: they face strategic complementarities in adoption decisions.
The problem in my paper is more complex mixing coordination and competition incentives
(agents want to withdraw before others).

Stepping back, my focus on information diffusion through social networks connects to a
broader theoretical literature on how information structure shapes coordination in financial
crises. The global games tradition, pioneered by Morris and Shin (2001) for currency attacks
and adapted by Peck and Shell (2003) to bank runs, demonstrates that coordination outcomes
depend critically on the precision of public versus private information. Angeletos and Pavan
(2004) show that greater transparency in public information can either facilitate or hinder
coordination depending on the degree of strategic complementarity. Morris and Shin (2002)
establish that enhanced public information dissemination can reduce welfare when agents
have socially valuable private information. More recently, Parlatore (2024)) demonstrates that
more precise information increases an economy’s vulnerability to bank runs: as information
quality improves, depositors can better distinguish fragile from healthy states, strengthening
their incentives to withdraw and making run-proof contracts costlier. My contribution to
this literature lies in the dynamics: showing how information diffusion dynamics determine
runs.

The paper proceeds as follows. Section [2| presents empirical evidence on the comple-
mentarity between fundamental and coordination risk. Section [3| develops the theoretical
framework. Section 4] characterizes stationary equilibria and derives the hazard rate decom-
position. Section |5 analyzes how coordination frictions and deposit attractiveness determine
run dynamics, establishing the main result. Section [6] explores how the model can be used
for structural estimation using crisis-period stock returns. Section[7]explores extensions with
heterogeneity, interest rates, and social learning.



2 Empirical Evidence: The Role of Depositor Concen-
tration

I present motivating empirical evidence on the role of depositor concentration during the 2023
U.S. regional bank crisis. Following the litterature, I proxy run severity by drops in banks
stock returns. Substantial drops occurred predominantly among banks with both high fun-
damental risk and concentrated deposit bases. Banks with weak fundamentals but dispersed
depositor bases experienced milder stress. This pattern suggests that fundamental fragility
alone is necessary but not sufficient for runs; “coordination risk” plays a complementary
role, motivating the theoretical framework developed in subsequent sections.

2.1 Perspectives on the 2023 Regional Bank Crisis.

The regional banking crisis of March 2023 emerged following Federal Reserve interest rate
hikes during 2022-2023 that eroded the value of fixed-rate securities held by many regional
banks. Silicon Valley Bank (SVB) announced a $1.8 billion loss on securities sales on March
8, 2023, triggering a rapid deposit run; two days later, SVB failed after $42 billion in deposit
outflows. Signature Bank followed on March 12, and First Republic collapsed on May 1, while
several other regional banks faced severe stress but survived. Regulatory interventions were
announced on March 12, including the Federal Reserve’s Bank Term Funding Program and
FDIC guarantees of uninsured deposits, sought to prevent contagion. The crisis prompted
commentary attributing failures to structural balance sheets, digital banking technologies,
and social media—with one puzzle: why did some banks with similar fundamentals survive
while others failed? In empirical finance, two complementary strands of literature have
emerged to answer this question [

The first emphasizes fundamental risk stemming from re-composition of bank value. A
series of paperf] document that monetary tightening had strong adverse effects on bank
balance sheets. Banks like SVB that invested heavily in short-term assets experienced sig-
nificant mark-to-market depreciation after the rate hikes. Loss of asset value, however, does
not suffice to explain the sudden, coordinated, nature of depositor withdrawals. Drechsler
et al. (2025) highlights a complementary effect of monetary tightening: while asset values
declined, deposit franchise values actually increased because higher market rates allowed
banks to capture larger spreads on deposits. Increased reliance on deposit franchises sub-
jected banks to solvency runs, particularly when most depositors are uninsured (as was the
case for SVB). Indeed those franchises are fragile: if depositors run, the franchise is destroyed,
destroying the bank’s value overall and thereby justifying the run in the first place.

The second strand focuses on depositor characteristics. Some papers emphasize the
individual behavior of depositors, documenting that certain clienteles—such as uninsured
depositors or those from sectors under pressure (crypto, venture capital)—were particularly
sensitive to fragility concernsﬂ Other papers, motivated by the historical speed of the

4T refer to Kelly and Rose [2025 and Cipriani et al. 2024| for a very rich account of the crisis and the
subsequent literature.

®See notably Jiang et al. (2024), Choi et al. (2023) and Koont et al. (2024).

6Chang et al. (2023) emphasize the fundamental role of uninsured depositors in propagating the crisis,



run, emphasize the collective behavior of depositors, examining how relationships among
depositors facilitated coordination. Cookson et al. (2023) demonstrate that banks with high
pre-existing Twitter exposure lost 4.3 percentage points more stock value during the SVB
run, showing that social media relationships acted as a catalyst for coordinating depositor
withdrawals. Benmelech et al. (2024) find that bank branch density—a proxy for physical
coordination frictions—significantly affected run vulnerability.

2.2 Measure of fundamental risk and coordination frictions

The distinct perspectives on fundamental versus coordination-driven vulnerabilities raise
the question of how these forces interact to generate runs. To explore this interaction and
motivate the theoretical framework I develop in Section [3], I construct measures that capture
both dimensions. For fundamental risk, I follow Drechsler et al. (2025))’s deposit franchise
approach. For coordination frictions—structural impediments to information diffusion—I
use a simple measure of geographic concentration of deposits. Together, these measures
reveal a stark complementarity: severe runs occurred predominantly at banks where weak
fundamentals coincided with low coordination frictions (high concentration).

Fundamental risk My measure of fundamental risk is directly from the work of Drechsler
et al. (2025)[] They show that a bank’s total economic value can be decomposed as the
sum of, on the one hand, the marked-to-market value of assets net of the book value of
total deposits, on the other hand, the franchise value of deposits. The authors provide a
quantitative framework to estimate each component from the Call Reports. A bank becomes
insolvent when its total value falls below a critical threshold yﬁ From the bank value
decomposition, I define the solvency measure  as the critical fraction of the total deposit
franchise that must be lost for the bank to reach this threshold:

A-D + (1—k)x DF =u
—— <~
MTM Equity Value Deposit Franchise Value

Banks with x < 1 face genuine fundamental risk: a sufficiently large run can render them
insolvent. Banks with x > 1 remain solvent even after losing their entire deposit franchise,
making runs unlikely in the first place. Appendix discusses the construction of this
measure in detail.

Coordination frictions. To measure coordination frictions, I use a simple, transparent
proxy: the geographic concentration of deposits across bank branches. I measure concen-
tration using the Herfindahl-Hirschman Index (HHI) of branch-level deposits. Formally, the

documenting that uninsured depositors represent valuable clients whose loan demand creates core lending
relationships, rather than merely unstable funding sources. Kelly and Rose (2025)) show that banks with busi-
ness models oriented toward sectors under pressure (crypto, venture capital) faced greater stress, independent
of their fundamental balance sheet exposures.

"I am grateful to Itamar Drechsler, Alexi Savov, Philipp Schnabl, and Olivier Wang for generously sharing
their replication code.

8Following Drechsler et al. 2025, I set v to 3% of assets in my empirical analysis. 3% corresponds to the
Basel III recommendation for banks in good standing.



HHI is defined as:

HHI — Z ( Deposits in % )2
i€Branches ZZ DepOSitS n g '

HHI has a natural interpretation as the probability that two randomly selected deposit
dollars originate from the same branch. The key insight is straightforward: when deposits are
geographically concentrated, depositors are more likely to share local networks and encounter
each other, allowing information about bank health to spread more rapidly. This faster
information transmission reduces coordination frictions—depositors can better assess how
many others have learned about potential problems and are likely withdrawing, making
their own withdrawal decisions clearer.

While other measures could be proposed, HHI offers a parsimonious measure of the net-
work structure relevant for information transmission. It is computed from publicly available
regulatory data (FDIC’s Summary of Deposits) and can be readily constructed for other cri-
sis episodes. Appendix |B| provides additional discussion of HHI’s distribution across banks,
its time-series evolution, and its correlation with other bank characteristics.

2.3 Empirical Strategy and Results

To test whether fundamental and coordination risk jointly determine bank vulnerability
during the crisis, I examine cumulative stock returns during the week of March 6-13, 2023—
around SVB’s collapse| Absent high-frequency data on deposit outflows, stock returns
provide the best available proxy for run severity during this period and have been standard
in the 2023 banking crisis literature["

Figure [1| presents the relationship between stock returns during the crisis week, funda-
mental risk (k), and coordination risk (HHI), with color intensity indicating return magni-
tude. The figure reveals that banks experiencing large stock price declines cluster in the
bottom-right region: low  (high fundamental risk) combined with high HHI (high depositor
concentration). SVB, First Republic, Signature Bank, Western Alliance, and PacWest all
are in that category[]] In contrast, banks with x > 1 generally show small price drops, con-
sistent with the interpretation that such banks remain solvent even after complete deposit
franchise destruction (which prevents any incentive to run in the first place). Wells Fargo,
JPMorgan Chase, and Citigroup fall in this categoryH Among fragile banks (k < 1), those
with low HHI experienced substantially smaller stock price declines despite their fundamen-
tal weakness—US Bank and Bank of America exemplify this pattern. The theoretical model
I develop in subsequent sections focuses particularly on explaining this protective effect: why
dispersed depositor bases can prevent runs even at fundamentally fragile institutions.

9Stock returns are sourced from CRSP; see Appendix for construction details.

0Cookson et al. (2023) and Benmelech et al. (2024)), for example, directly use stock returns as the testable
outcome of their bank vulnerability measures. Importantly, Cipriani et al. (2024]) validate this approach using
confidential Federal Reserve data, showing that stock returns exhibit a strong correlation with actual deposit
outflows during the run phase.

1Some banks in this high-risk region experienced only mild stock price declines; investigation suggests
these are predominantly small regional banks outside of California.

PInterestingly, Citigroup exhibits relatively high depositor concentration and strong fundamentals.



To formalize these patterns, I estimate two baseline specifications assessing the interplay
between coordination and fundamental risk. The first specification tests whether both HHI
and k predict crisis outcomes after controlling for each other:

Stock Return; = S1HHI; + Gok; + €;. (8)

The second specification introduces an interaction term to test whether the effect of depositor
concentration depends on fundamental fragility:

Stock Returni = BlHHIz + Bzﬂm<1 + ﬁgHHIl X ]lffi<1 + €;. @

The indicator 1,,.; identifies banks with genuine fundamental vulnerability—those that
would become insolvent if their deposit franchise were sufficiently eroded.

Table [1] presents the results. Column (1) shows that x leads to higher returns (smaller
price drops), suggesting that safer banks—those requiring more destruction of their deposit
franchise to become insolvent—were more protected against runs. Column (2) shows that
depositor concentration (HHI) is strongly associated with worse stock performance. Col-
umn (3) includes both measures simultaneously: the coefficients remain nearly unchanged,
suggesting these two sources of risk are largely orthogonal. The R? increases from 0.052
(Column 1) to 0.159 (Column 3) when adding in HHI to risk on bank value, suggesting an
important role of depositor concentration. Column (5) presents the key complementarity
test: among safe banks (k > 1), the HHI effect is small and barely significant. Among fragile
banks (k < 1), the total HHI effect is substantially larger and highly significant. Notably, the
effect of being fragile when HHI equals zero is effectively null, suggesting that both funda-
mental fragility and depositor concentration are necessary to identify banks that experienced
severe runs. Additional robustness checks and alternative specifications, including controls
for size, uninsured shares and wholesale funding, are provided in Appendix [B.3.2]

Dependent Variable: Cumulative Stock Return (Mar 6-13, 2023)

(1) 2) (3) (4) ()

Solvency k 0.072%** 0.069***  0.034
(0.023) (0.022)  (0.034)
Depositor HHI -0.284%FF% (0. 278%F% _(0.453%FF  _0.131*
(0.061)  (0.059)  (0.142)  (0.076)
Depositor HHI xx 0.170
(0.126)
Indicator (k < 1) -0.000
(0.019)
k < 1x Depositor HHI -0.354%**
(0.120)
Constant -0.255%F* (. 154%F* _(.225%F* _(,190%** _0.152%**
(0.025)  (0.010)  (0.025)  (0.036)  (0.012)
Observations 176 176 176 176 176
R? 0.052 0.112 0.159 0.168 0.179

Note: *** p<0.01, ** p<0.05, * p<0.1.
Table 1: Deposit concentration, franchise value and bank returns.

Reading note: OLS regressions of cumulative stock returns on HHI (depositor concentration)
and x (solvency measure). Standard errors in parentheses.
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Figure 1: Stock returns, fundamental risk, and coordination risk.

Reading note: Scatterplot of individual BHCs by HHI (x-axis) and solvency « (y-axis). Color
represent cumulative returns on stocks between March 6 and March 13 2023. Banks who experi-
enced the largest price declines, including SVB and First Republic, all displayed high HHI and low
k (lower right).

3 Model: A Fragile Bank and a Rumor Spreading

Motivated by the empirical evidence of how depositor concentration and fundamental risk
interact to determine run outcomes, I now develop a theoretical framework that captures
these mechanisms. The model extends the frameworks of Abreu and Brunnermeier (2003)
and He and Manela (2016) to explicitly incorporate the role of communication speed among
depositors. In this section, I formalize the object of communication and model its diffusion
using epidemiological tools. The next section analyzes the equilibrium implications.

3.1 Many Agents, One Bank

Time is continuous and extends forever. There is a continuum of agents of measure one (with
no atoms) who, at any time, can choose how much of their wealth to hold in deposits versus
cash. All agents are endowed with one unit of wealth. Deposits yield a utility flow of u per
unitf}] while cash yields no utility flow. Cash represents the best outside option, so u captures
the excess utility from holding deposits. Agents directly maximize their expected utility flow
without explicit consumption modeling. I remain agnostic on specific interpretations for wu,

13Deposits do not accrue interest. Section 7.2 extends the model to interest-bearing deposits, which doesn’t
change the core mechanics.
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treating it as a reduced-form representation of non-pecuniary benefits such as convenience@

The risk facing depositors takes the form of a run-triggered crash. At some random time
to ~ E(N) (exponentially distributed™| with rate A), the bank faces a shock on its value. For
all t > ty, the bank is potentially['¥ fragile. A fragile bank can only cover the withdrawal of
k of its depositors. If a mass of agents exceeding the threshold s attempts to withdraw, the
bank crashes, and all deposits are lost (including those in the process of being withdrawn).
In such an event the game ends and agents’ payoffs are equal to how much wealth they store
in cash.E]. The solvency threshold x maps to the empirical measure defined in Section ,
where it captured the critical fraction of the deposit franchise that must be lost for a bank
to become insolvent. Banks with x < 1 face genuine fragility risk because the destruction
of the deposit franchise from a run would render the bank insolvent. The deposit franchise
interpretation is not necessary, x could for example represent liquidity reserve. k captures
a general idea with simple tool: a fragile bank will crash if too many agents (more than k)
try to withdraw simultaneously.

3.2 Solvency Shocks and the Spread of Panic

While the previous subsection established the bank’s vulnerability to mass withdrawals, the
critical question is how depositors learn about and react to potential fragility. At the heart
of my model lies an information friction: knowledge of the shock faced by the bank diffuses
gradually among agents through social interactions.

A simple backward induction argument shows that if the shock were perfectly observed
by all agents, it would lead to an immediate run in equilibrium. In contrast, I assume
a form of sequential awareness as in Abreu and Brunnermeier (2003)): agents learn about
the shock gradually. I microfound sequential awareness explicitly as information diffusion
through interpersonal communication, building on the susceptible-infected (SI) epidemiolog-
ical framework.

At each time t > ty, the mass of agents who have learned about the shock, denoted G (),
evolves according to the ordinary differential equation:

dG(1) = (1 — G(1))G(t)Adt.

A mass 1 — G(t) of uninformed agents meets other agents at rate 3, and each meeting has
probability G(t) of being with an informed agent who passes along information about the
shock. Agents are informed that “a shock happened” but not of when it did.

The function G(t) represents the measure of agents who have learned about the shock
by time ¢. The differential dG(t) captures both the fraction of the population learning in

MThe next section emphasizes an alternative interpretation for u: it represents the crash-risk threshold
agents are willing to accept when they hold deposits.

15The assumption of an exponential distribution is at heart an assumption on agents’ priors for the shocks
rather than the actual physical probability which doesn’t play a role in my model.

16GQection 3.3 explains why potentially.

I"Effectively this is saying that agents value wealth directly and are risk-neutral. Before crash the value
of a dollar is more than its nominal value because of the potential utility flow from deposit. After a crash
the bank disappear and agents value their wealth at nominal value.
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the interval [t,t + dt] and—Dby the law of large numbers—an individual agent’s probability
of learning in that interval.

The meeting rate [ is a key parameter capturing coordination frictions: higher g implies
faster information transmission, which I will show increases “coordination risk” from the
bank point of view. In the empirical analysis of Section [2| I proxy coordination frictions
using deposit concentration (HHI)—when deposits are geographically concentrated (high
HHI), information spread faster because depositors are more likely to interact. More broadly,
B can be interpreted as reflecting exposure to social media, shared investment networks, or
any channel determining how rapidly information spreads between depositors.

The solution to this differential equation is the well-known logistic function:

eﬂ(t_to)

G(t - tO) = C ¥+ eﬂ(t*to) )

where C'is determined by the initial condition G(0), assumed exogeneous. Figure [2 displays
the population dynamics of informed agents for three scenarios where the learning rate 3
takes values 0.5, 1, and 2. The learning curve is S-shaped: it starts slowly because only a
small portion of agents are informed, then accelerates as more agents become informed and
pass the rumor on, and finally slows down as most agents are informed and the rumor has
less room to spread. Note that the distribution of learning times with lower [ first-order
stochastically dominates that with higher §: when communication is faster, agents learn
earlier.

Following He and Manela (2016), I further assume the learning process is bounded by an
“awareness window”. Once a sufficient portion of agents have learned, i.e. G(t) > 1 — ¢ for
some € > 0, [ assume the shock is publicly revealed. This is primarily a technical assumption
to ensure stationarity in the model—it keeps agents’ belief supports bounded and, crucially,
ensures the support size is independent of calendar time.[r_g] Without it, agents learning later
would have progressively wider supports for their beliefs about when the shock happened,
complicating the analysis substantially. It will be convenient to parametrize the awareness
window directly as n := G7!(1 — ¢), the time it takes to reach 1 — ¢ informed agents. Just
as He and Manela (2016), I focus on realizations where t, > 7, ensuring the belief support
remains time-invariant.

Section [7] discusses an alternative learning structure where agents learn by observing oth-
ers’” withdrawal behavior rather than through word-of-mouth communication. This “social
learning” mechanism introduces additional complexity that requires numerical methods, but
the core insights of the model remain unchanged.

Finally, notice that agents only learn once: they ignore any information they get from
subsequent meetings. Analyzing what happens if one relaxes that assumption gets intractable
quickly, as it requires to understand how beliefs updates conditional on a rich state-space
(the timing of each meetings). It is nonetheless a fascinating question, that I leave for future
research.

80ne could directly make the behavioral assumption that agents put 0 probability on the event that
shocks happened much earlier that their learning time.

13



Figure 2: Dynamics of informed agents
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Reading note: Logistic curves showing the fraction of informed agents G(t) over time for different
communication speeds 5 € {0.5,1,2}. S-shaped dynamics: slow initial spread, rapid middle phase,
saturation. Higher § implies faster information diffusion and earlier learning.

3.3 False Rumors and Recovery Dynamics

I make the crucial additional assumption that the piece of information spreading in the
process described above may be false. Formally, when a “shock” happens, two events may
realize. With probability p the bank truly becomes fragile with reduced withdrawal capacity
k < 1. With probability (1 — p), the bank remains healthy, able to withstand any level of
withdrawals (k = 1)@ Throughout the analysis, I maintain p < 1. One can interpret the
information spread following the shock as a rumor, which may be true with probability p or
false with probability (1 — p).

Agents cannot distinguish between true and false rumors—they only observe that a shock
event has occurred. They must infer the bank’s actual state from observing whether a
crash materializes over time. If many periods pass without a crash despite widespread
(estimated) withdrawals, agents rationally update their beliefs toward the shock being false.
This Bayesian updating drives recovery dynamics: agents who initially withdrew out of
caution gradually return to holding deposits as confidence rebuilds. These complex dynamics
are analyzed in detail in the next section.

The existence of false rumors is essential to the model’s mechanism. Without them, any
shock would guarantee bank fragility, and rational agents would never return to deposits
after withdrawing, making runs always successful. A central result of the paper is that even
banks that are truly fragile may escape runs if coordination frictions are strong enough; it
is only possible because agents put some probability on the event that the bank is safe.

19 Alternatively, one may think of the bank as being ex-ante of a type robust to shock, with probability
1—p.
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Remark 1 (Comparison with Exponential Learning Models). He and Manela (2016) also
incorporate false rumors in their model of bank runs. However, their assumption of expo-
nential learning—where the mass of informed agents grows at rate f(1 — G(t)) rather than
the logistic rate BG(t)(1 — G(t)) used here—fundamentally changes the equilibrium dynam-
1cs. Under exponential learning, the hazard rate for crash increases monotonically over time,
preventing the kind of recovery dynamics studied in Section [J

I focus throughout on the dynamics generated by a single rumor—even if false, the bank
faces no additional shocks during the analysis period. This allows me to clearly characterize
how a single informational event propagates through the depositor network and potentially
resolves through either collapse or recovery. Finally, for simplicity, I constrain agents hold
all wealth in deposits until learning about the shockET] although we could do without the
assumption and focus on a parameter space where agents don’t want to leave ex-ante.

4 Analysis: The Structure of Run Equilibria

I now characterize the equilibrium withdrawal strategies of informed depositors—those who
have learned about potential bank fragility through social interactions. By focusing on sta-
tionary equilibria, where behavior depends only on time since learning rather than calendar
time, the strategic problem becomes tractable.

4.1 The Agent Problem

The agent’s decision can be formalized through dynamic programming. Let V' (¢) denote
the expected value of $1 in wealth at time ¢. Since deposits do not accrue interest, wealth
remains constant absent a crash. The value function satisfies the Hamilton-Jacobi-Bellman
equation:

0=V(t)+ max {u(l —a) + h(t)ja =V (1))},

where h(t) is the hazard rate—the instantaneous probability of a crash conditional on
survival—and a € [0, 1] is the fraction of wealth held in cash. The first term captures
utility flow from deposits; the second captures expected value from a crash, equal to the
probability A(t) times the net gain o — V' (t) (the agent retrieves the cash portion « but loses
the continuation value V'(¢)).

Rearranging, the HJB becomes 0 = V + u — h(t)V (t) + max,{(h(t) — u)a}. Linearity
in a implies bang-bang solutions: if h(t) > u, the agent withdraws everything (a* = 1); if
h(t) < u, the agent holds everything in deposits (a* = 0). The intuition is simple: at the
margin, moving one unit of wealth to cash costs v in utility flow but provides expected crash
protection h(t). The following lemma formalizes this result. Because these probabilities
depend on the agent’s learning time ¢;, I henceforth write h(t;t;).

20This focuses the analysis on run dynamics following information revelation. Modeling pre-shock deposit
choice is interesting in itself but not the focus of this paper.
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Lemma 1. The optimal holding o*(t;t;) of an agent who learned at t; at time t is given by:

The result suggests a more reduced form interpretation for u. It represents a risk-tolerance
threshold. Agents maintain deposits when crash risk stay below this threshold and withdraw
when it exceeds it. This behavioral rule could be taken as primitive rather than derived from
utility flows.

4.2 Stationary Equilibrium

The previous subsection shows that the study of agents withdrawing behavior essentially
amounts to studying the hazard rate h(t;t;). This object captures agents perception of risk,
and as such is determined in equilibrium. Agents’ beliefs about others’ withdrawal strategies
determine the hazard rate, which in turn shapes their own optimal strategies, hence crash-
risk, hence beliefs. We can make this fixed-point problem tractable by focusing on stationary
equilibria, where equilibrium behavior depends only on time since learning, not calendar
time.

Definition 1. A stationary equilibrium is an Perfect Bayesian Equilibrium satisfying:
1. The bank crashes at a fized interval after the shock: ty+ €.

2. Agents’ holdings depend solely on elapsed time since learning the rumor: «(t;t;) =
a(T), with T =t — t;.

Conditions (1) and (2) are two alternative way to define equilibria, they are logically
equivalent. To understand why condition (2) implies condition (1), define the aggregate
withdrawals at time ¢, given a shock at %y, as:

t
AW (£ 1) = / alt:4:) dG(t; —t,).
to

This expression integrates the withdrawal decisions «a(t;t;) of all agents, weighted by the
density of agents who learned at each time t; € [to,t]. The collapse happens if and when
AW (t;to) reaches the threshold .

Suppose agents’ optimal holdings depend only on 7 = ¢t — t; (condition 2). Substituting
into the expression for aggregate withdrawals and letting & = ¢ — ¢y denote time since the
shock, we obtain:

13
AW (€) = /0 alé — 5)dG(s).

The crash time is therefore characterized by £* = inf{¢ : AW ({) = k}, which guarantees
that the crash happens after a fixed amount of time, completing the proof that condition
(2) implies condition (1).

The reverse implication is discussed in the next subsection.
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4.3 Understanding the Hazard Rate

Lemma [2| below is one of central technical piece allowing tractability in the model. It
shows that hazard rates depend only on the time since learning when crash is a the form
to + &, ensuring consistency in the definition of stationary equilibrium. Further, this form of
stationarity in hazard rate allows a tractable description of their evolution, which will allow
to establish sharp characterization of agent withdrawal behavior.

Lemma 2. Suppose the crash happens a fized amount of time after to, at to + &*. Consider
h(t; + T;t;), the hazard rate of collapse for an agent who learned at time t; and evaluates it
at T periods after learning. The following properties hold:

o h(t;+7;t;) is a function of T only, i.e., it suffices to write h(T) := h(t; + 7;t;).
o h(r) =n(1)hs(T) where:
— 7w(T) is the posterior belief that the bank is fragile, and is decreasing in .

— h(7) is unimodal.

— hy(T) is the posterior hazard rate of collapse of a fragile bank (which collapses
with probability 1 if K is reached), and is increasing in T.

— We have:
dr(1) = —(1 — 7w(7))w(7)hs(T)drT,

ahs(r) = (s (r) = (FE=5 +2) ) s (r)dr.

Proof. See Appendix [A] ]

Intuitively, if the crash occurs at ty + &*, agents need only estimate t,. Consider two
agents who learn at different calendar times. The memoryless property of the exponential
distribution ensures they update their estimate of ¢, identically. An agent’s learning time
reveals nothing about their position in the sequential awareness process. Consequently, all
informed agents share the same initial hazard rate, regardless of when they learn. As time
passes, the only new information—that no crash has yet occurred—is common knowledge
among informed agents, causing them to update beliefs identically and maintain synchronized
hazard rates over time.

Figure [3] illustrates the dynamics captured by Lemma 2] The total hazard rate h(r)
(purple curve) exhibits a characteristic hump shape: initially increasing as agents grow more
worried about collapse, then decreasing as survival evidence accumulates and agents infer
the rumor was likely false.

The decomposition h(7) = 7(7)hs(7) reveals two opposing forces driving this pattern.
The posterior belief that the bank is fragile (7(7), blue curve) decreases monotonically as

2LAll figures (excluding figures on empirical results Section [2| and Section @ correspond to equilibrium
quantities computed numerically. See Appendix[C|for details on the computational implementation. Baseline
parameter values and figure-specific parameters are documented in Tables |§| and m
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h(r) = m(T) x h(T)

h(r) — Total hazard
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Figure 3: Hazard rate decomposition
Reading note: Decomposition of total hazard rate h(7) (purple) into posterior fragility belief
7(7) (blue, declining) and conditional hazard under fragility hy(7) (orange, rising). Product h =
7 - hy creates hump shape: initially rising as hy increase dominates, later falling as 7 decline
dominates.

agents update based on survival. Each period without a crash provides evidence against
fragility, with the strength of this evidence is proportional to how likely a crash would
have been had the bank been fragile (captured by hy). The differential equation dr =
—(1 —m)mhdr has logistic structure, making updates fastest when uncertainty is highest (7
near 1/2) and slowest when beliefs approach certainty.

The dynamics of the conditional hazard h; are best interpreted viewed backwards from
the moment of collapse £ (marked by the golden bar). In a reversed time scale, the process
follows a logistic curve strictly above capacity. It begins at infinity—reflecting that the crash
is imminent—and decays toward the time-varying capacity line A+ G” /G’ as we recede from
the deadline. To build intuition, consider the simplified case where G” /G’ = 0, corresponding
to a constant speed of information diffusion (eg, uniform learning). Here, the capacity reduces
to A, the fundamental arrival rate of shocks; absent acceleration in learning, the hazard rate
would simply settle toward the background risk of a shock (in backward time, as we get away
form collapse time). The term G” /G’ acts as a dynamic correction to this baseline, capturing
the curvature of the rumor’s spread. When information diffusion accelerates (G”/G’ > 0),
the effective risk floor rises above \; when it decelerates, the floor drops, modulating the
urgency of the run.

The interaction of these forces produces the unimodal total hazard rate. Early on, rapid
increases in hy dominate gradual declines in 7, causing h to rise. Later, as survival evidence
mounts and learning saturates, declining © dominates, causing h to fall. Since the hazard
rate crosses the threshold u at most twice—once rising, once falling—agents optimally exit
and reenter deposits once, as formalized in the following corollary.
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Corollary 1. In a stationary equilibrium with crash at to + &, agents optimally exit at time
1o and optimally reenter at time 17, with 7o, € [0,£]. We have 7o < 11 and

170 = inf{7 : h(7) > u},
11 = sup{7 : h(T) > u}.

If h(T) < u for all T € [0,&], the agents never get out, and we write by convention
T0 =11 = €.

4.4 Characterization of Stationary Equilibria

The simplicity introduced by stationary equilibrium allows a clear characterization of equi-
librium through a concise three-equation system, formalized in Proposition [I}

Proposition 1. A stationary equilibrium comprises a learning distribution G, optimal exit
time 715, reentry time 7;, and crash time £ satisfying:

e Learning dynamics:

dG = (1 — G)GpBdt
o [rit and reentry conditions:

15 = inf{7 : h(7) > u}, 77 =sup{r:h(1) > u}
[0,¢] [0,€]

o ('rash condition:

=m{e:GE—710) -G —17) =~}

The exit and reentry conditions follow from Corollary [l The crash condition exploits
the single-exit, single-reentry structure: aggregate withdrawals equal the mass of agents who
have exited but not yet reentered, which is simply G(§ — 75) — G(§ — 77): the difference
between the curves for exit and reentry, evaluated at crash time £*.

The characterization exhibits a structure common to macroeconomic and mean-field game
frameworks with three components: (1) individual optimality conditions—the exit and reen-
try rules from Lemma ; (2) forward dynamics governing aggregate state variables—the
logistic learning process that determines how information spreads through the depositor
network; and (3) an aggregate consistency requirement—the crash condition ensuring that
aggregate withdrawals G(£* — 7)) — G(&* — 77) equal the bank’s withdrawal capacity x pre-
cisely when the crash occurs. This system of equations can be solved numerically to compute
equilibrium quantities (see Appendix |C]).

The system admits two types of equilibria. A “no-run” equilibrium occurs when £* = oo:
the hazard rate never exceeds u, so agents never withdraw, and the bank survives (justifying
the flat hazard-rate at 0). Such an equilibrium always exists (agents can always ignore the
rumor). Conversely, a “run” equilibrium occurs when £* < oco: agents do withdraw, and
the bank crashes at ty + £* if genuinely fragile. The existence of run equilibria depends on
whether deposit utility (u) is sufficiently low and communication speed (/3) sufficiently high
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to make collective withdrawals self-fulfilling despite agents’ uncertainty about bank health.
I characterize these existence conditions precisely in Section [5|

An important technical observation concerns the timing of withdrawals. Since the learn-
ing dynamics determine G, Proposition |1| effectively solves for three unknowns (75, 77, £*)
using three conditions. However, the crash condition and the hazard rates’ depends only on
time differences (£* — 7, and £* — 77), making the system underdetermined. For generic pa-
rameter values, this forces a corner solution. The following corollary establishes that 75 = 0:
agents withdraw immediately upon learning.

Corollary 2. For generic parameter sets, any existing run equilibrium involves immediate
withdrawal upon learning (18 =0).

The intuition is the following. Suppose, as a candidate equilibrium, all agents withdraw
immediately upon learning, leading to a crash at time ¢y, + £. Consider an individual agent
who takes this crash time as given. If h(0) < u, this agent would prefer to wait some 7 > 0
periods before withdrawing. However, since all agents are symmetric, they would form simi-
lar best-responses, which would push the crash from time £ to £ +7. Appendix [A] shows that
shifting the crash by 7 periods shifts the entire hazard schedule by 7 periods ] Thus agents
facing a crash at £ + 7 would find it optimal to wait 27, which further delays the crash,
inducing still longer waiting, etc. This feedback continues without bound: waiting breeds
more waiting, preventing any interior fixed point from existing. The system unravels to a
no-run equilibrium with £* = oco. Only 75 = 0 can survive as an equilibrium—immediate
withdrawal upon learning. Whenever parameters force h(0) < u the equilibrium will there-
fore be a no-run equilibrium similar to a bubbld?’} agents keep their deposits even if they
believe the bank is fragile because they believe other agents will similarly “speculate” and
keep their deposits.

5 Flattening the Curve

Having characterized stationary run equilibria, this section turn to their dynamic proper-
ties. Runs exhibit a characteristic hump-shaped pattern of withdrawals—first rising, then
peaking, and finally falling if the bank survives. This “curve” of withdrawals is central to
understanding run dynamics: the height determines whether the bank crashes. As in epi-
demic control, slowing the rate of contagion and reducing exposure duration can “fatten”
this curve of withdrawals, reducing peak stress and potentially preventing crashes altogether.

5.1 The Anatomy of a Run

Figure [4] display the typical run dynamics. Aggregate withdrawals rise, peak when the gap
between exits and reentries is largest, then decline as confidence returns. The peak’s height
determines whether the bank crashes.

22See Appendix

23This is because agents care about how far away they estimate being from the crash.
24This is the kind of dynamics studied in Abreu and Brunnermeier (2003).
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To understand better the dynamics consider G(t), the cumulative mass of informed
agents, represented in red with a dotted line. Since agents withdraw immediately upon
learning (Corollary , this curve also tracks the mass of agents who have withdrawn. The
blue curve is G(t—77) the mass of agents who have returned to holding deposits after initially
withdrawing. Visually, it is simply G(¢) shifted by 7;. The vertical distance between these
curves equals aggregate withdrawals AW (t) = G(t) — G(t — 77) at each instant, in solid red
(for t < 77, no agents have yet reentered, so AW (t) = G(t)). Crash happens whenever AW
crosses the horizontal line marking . For a fragile bank, the trajectory stops at crash time
&*; the continuation beyond this point shows the recovery dynamics that would occur for a
safe bank that survives the peak.

The hump arises from the interplay between exits and reentries. Early on, rumors spread
fast and many agents exit simultaneously. Since most just learned, they don’t reenter yet,
causing AW to rise. Over time, however, more agents who exited early accumulated enough
evidence from the absence of crash to believe the rumor was false begin reentering, causing
the rate of withdrawal growth to slow. For healthy banks that survive collapse reentries
eventually outpace new exits, and AW begins to decline—the recovery phase begins.

Visually it is clear that the peak depends on two factors: how steep are the exit and
reentry curves and how close they are to each others. The first depends on /3, the second on
agents optimal actions and notably on u. Figure paland Figure |[5b| show how run dynamics
vary with communication speed and deposit utility. Fast communication (high ) produces
a sharper, taller peak that arrives sooner, reflecting rapid information diffusion. Low deposit
utility (low ) also produces a higher peak because agents stay withdrawn longer: when de-
posits are less attractive, the hazard rate must fall further before agents are willing to reenter,
increasing 7. With agents withdrawn for longer periods, more agents are simultaneously
withdrawn at any given time, increasing the gap between exits and reentries. Understanding
these forces is essential for designing policies to mitigate runs, a topic I turn to next.

5.2 Reentry Time

The peak of aggregate withdrawals—denoted AW = max; AW (t)—is the critical quantity
determining whether a run leads to collapse. As discussed in the previous subsection, the
peak arises from the interplay between the learning curve’s steepness (governed by ) and
the gap between exit and reentry (77, since 7o = 0). Borrowing insight from epidemiology,
we can identify two main drivers of peak height: the “contact rate” (communication speed
p) and the “sickness period” (withdrawal duration 77). Just as epidemic peaks depend on
how fast a disease spreads and how long individuals remain sick, run peaks depend on how
fast rumors spread and how long agents remain Withdrawn.@

A key difference from standard epidemiological models is that the withdrawal duration
is endogenous in my model—agents choose when to reenter based on their assessment of
immediate crash risk. The reentry time 77 is determined by when the hazard rate h(7) falls

25Longer withdrawal durations increase stress on banks balance sheets like extended patient stays exercise
stress on hospital capacity. Standard epidemiology is typically also concerned with how long agents are con-
tagious. In my model agents are contagious forever, because informed agents always pass on the information,
even after reentry. However, in the social learning extension (Section 7.3) agents are contagious only when
they are withdrawn themselves, creating interesting dynamics.
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Figure 4: Dynamics of a run equilibrium
Reading note: Dotted red curve shows cumulative mass of informed/withdrawn agents G(t).
Dotted blue curve shows mass who reentered G(t — 77). Horizontal distance correspond to reentry
time. Vertical distance equals aggregate withdrawals AW (t), in solid red. Horizontal line at
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Figure 5: Dynamics under alternative contexts.
Reading note: Panel (a): Fast communication produces steeper curves and higher, earlier peak.
Panel (b): Low deposit utility increases reentry time 77, widening gap between exit/reentry curves
and raising peak withdrawals.

below the utility threshold u. Higher deposit utility leads to earlier reentry because agents
are willing to accept higher risk to enjoy deposit benefits. The following lemma formalizes
how parameter changes affect reentry timing.

Lemma 3 (Reentry Time Comparative Statics). Consider a stationary run equilibrium char-
acterized by (§*,7}), where & < oo is the crash time and T} is the reentry time. Assume
such run equilibria continue to exist in a neighborhood of the parameters. Then, T} s locally:
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e non-increasing with respect to increases in u, and 1.
e non-decreasing with respect to increases in p.

Furthermore, if Tf < £* then the above relationships hold strictly: T; is strictly decreasing in
u,n and strictly increasing in p.

Proof. See Appendix [A] The Appendix also discuss parameter restrictions ensuring 7; <
&*. O

The lemma confirms that making deposits more attractive (higher u) induces agents to
reenter sooner, reducing 7;. This in turn reduces the peak of withdrawals by decreasing the
time interval during which agents are simultaneously withdrawn. Similarly, stronger bank
fundamentals (lower p, meaning higher probability the bank is healthy) accelerate reentry
because agents become reassured more quickly that the rumor was false@

5.3 How to Kill Runs

Can we reduce the peak sufficiently to prevent runs altogether? The answer is yes—there
exists a threshold level of deposit utility above which run equilibria cease to exist.

The intuition is straightforward. As u increases, agents reenter sooner, lowering the peak
of withdrawals. At some critical value u, the peak falls below the fragility threshold k,
meaning that even if the bank is fragile, withdrawals never reach the critical mass needed
to trigger collapse. But if withdrawals never reach k, a fragile bank never crashes, which
eliminates the very risk that would justify withdrawing in the first place. Agents anticipating
that the peak stays below x have no reason to run, and the run equilibrium unravels. The
result is formalized in Proposition [2]

Proposition 2. Given parameters (5, k,p,n), there exists a threshold ﬂlﬂ such that:

e No run equilibrium exists if u > 1.

o A unique run equilibrium exists if u < u.

Additionally, the peak withdrawal level AW = max, AW (t) is decreasing in u for u < .

26When interpreting the empirical evidence from Section |2} it is important to clarify how the model’s sol-
vency parameter x relates to the empirical measure of bank safety. In the model, s represents the mechanical
withdrawal capacity—the fraction of the deposit franchise that can be lost before insolvency. However, the
empirical k (constructed from balance sheet data) better captures overall bank safety, which operates pri-
marily through the prior probability p that the shock is real. One can formalize this by interpreting the
empirical measure as an expected value: & = pkiow + (1 — P)Knigh, Where Kiow < 1 and knign > 1 are fixed
across banks, and variation in g reflects changes in perceived safety p rather than mechanical capacity. Un-
der this interpretation, higher empirical x (safer banks) corresponds to lower p, which accelerates learning
and induces earlier reentry—as shown in the lemma above. The empirical findings in Section [2] and their
interpretation in Section [6] reflect this “safety belief channel” rather than the direct mechanical effect of
withdrawal capacity.

2TUnder the assumption G(n) > x + G(0) we have @ > 0. It is a natural assumption guaranteeing the
awareness window is large enough so that at least x agents have learned by the time learning stops. G(0) is
the initial condition, typically close to 0.
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Figure 6: Effect of deposit utility on withdrawals and collapse
Reading note: Panel (a): Peak aggregate withdrawals AW versus deposit utility v. Higher u
reduces peak, approaching threshold x (dashed line). At w, peak vanishes (no run). Panel (b):
Crash time £* and reentry time 77 versus w. Higher u delays crash, principally because agents
reenter sooner, making peaks lower.

Proof. See Appendix [A] O

Figure [0] illustrates these dynamics. Panel (a) shows that peak withdrawals decrease
monotonically in u, approaching s from above and vanishing at threshold ﬂﬁ Panel (b)
shows that crash time £* increases with u as agents reenter sooner, slowing withdrawal
accumulation.

From a normative perspective, Proposition [2|suggests that increasing deposit attractiveness—
through higher interest rateﬂ or improving deposit convenience—can prevent runs alto-
gether. The next subsection examines how the effectiveness of such policies depends critically
on communication speed.

5.4 The Role of Depositor Connectedness

Depositor connectedness 3 affects run dynamics first through a direct channel—faster com-
munication steepens the learning curve GG, concentrating withdrawals in a shorter time win-
dow. However, equilibrium effects are more subtle: faster communication also alters the haz-
ard rate h that agents form, potentially changing their reentry decisions. Directly computing
derivatives of equilibrium objects with respect to  proves intractable. The relationship of
the shape of h to 8 is complex, and piecing together effects from h and the direct effect in
the shape AW is not obvious. Fortunately, the model exhibits a useful scaling property that
allows studying the effect of S analytically nonetheless.

The key observation is that [ rescales time in the model. To see this, note that all
time derivatives in the equilibrium system are proportional to . If we transform time by
t — t/f, then the differential equations remain unchanged except that § — 1, u — u/f,

281t is possible in some cases that runs stop existing before reaching . Such cases arise when h(0) drops
below u and agents start waiting before withdrawals, prompting unraveling of the collapse described at the
end of Section

29Gection 7.2 extends the model to interest-bearing deposits (r > 0). The interest rate r plays a similar
role to the utility flow u: higher r induces earlier reentry and reduces peak withdrawals.
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and A — \/B3. Since n := G7(1 — ¢) represents the time to reach awareness saturation,
it scales inversely with 5. Specifically, in the non-scaled system there exists a 7 such that
n = 7/F. Under the time transformation, n — 7, which is independent of 3, ensuring the
model structure remains intact.

Recalling the interpretation of learning dynamics as random matching, 3 represents the
(Poisson) meeting rate between agents (which can be informed or non-informed). Accord-
ingly, 1/ is the expected time between two meetings. The relevant statistic for determining
run dynamics are u//f—the expected utility flow accumulated between meetings—and \/f—
the relative speed of shocks versus information diffusion. Increasing [ is equivalent to jointly
reducing deposit utility and the prior distribution for t,. While it is complex to tease out
both effects in full generality, I can show that under a mild restriction of parameters, the
first effect will dominate.

Corollary 3. Assume parameters (u, \, k,p,m) satisfy n < 1/\. There exists a thresholam
B > 0 such that:

o No run equilibrium exists if 3 < 3.

o A unique run equilibrium exists if B > 5.

Additionally:
e The peak withdrawal AW = max, AW (t) is increasing in 3 for 3 > J5.
Proof. See Appendix [A] O

The condition n < 1/ is sufficient but not necessaryﬂ It has a natual interpretation for
the banking context: the time scale of learning should be shorter than the one of solvency
shocks. More precisely, the time it takes for a shock to spread to almost the full population
(i.e. reach G(1 — €)) should be shorter than the expected time before another shock occurs,
that is %@

Corollary [3] establishes that lower coordination frictions amplify runs: higher [ increases
peak withdrawals. The result aligns with the empirical observations made in Section [2}
banks with high HHI (low coordination frictions, high coordination risk) experienced sub-
stantially larger stock price declines during the 2023 crisis. More importantly it establish the
reverse direction: disperse base can make run less severe, to a point where the peak drops
below solvency requirement, precluding runs altogether.

In addition, the fact that deposit utility becomes u/5 under rescaling has an interesting
normative implication: the effectiveness of deposit-enhancing policies depends critically on
coordination frictions. The threshold u required to prevent runs scales roughly linearly
with @: when coordination frictions are two times lower (higher 3, faster communication),
deposits must be made twice as attractive to achieve the same run-prevention effect.

30If k + G(n) > 1, then 3 > 0. Since G(n) = 1 — ¢ for small ¢, this condition typically holds.
31Numerical investigation actually suggests the corollary holds without restriction.
32Tn the model I assume only one shock realization, but the interpretation remains.
331t scales linearly if we ignore effects from /3 in the re-scaling, which are typically small.
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Figure [7] illustrates this interaction through a heatmap showing how peak withdrawals
vary jointly with u and 1/ (the average time between meetings). The figure reveals two key
patterns. First, the threshold relationship is approximately linear—the frontier where runs
disappear traces out an inverse relationship between u and 1/, consistent with the scaling
property. Second, the marginal effect of increasing u is larger when communication is slow
(high 1/5): the heatmap’s color gradient is steeper in regions of slow communication.

This interaction has important implications for bank risk management. When choosing
deposit yields (which have a similar effect as u, see Section 7.2), banks trade off stability
against profitability: higher yields prevent runs by inducing earlier reentry and reducing peak
withdrawals, but erode profit margins. The severity of this tradeoff depends critically on
depositor concentration. Banks with concentrated, well-connected depositor bases must offer
substantially higher yields to achieve run-prevention, which may severely erode profitability.
In contrast, banks with geographically dispersed depositors can achieve run-stability with
more modest yield enhancements. This suggests that depositor base composition—a feature
typically considered in the context of funding stability—also matters for run prevention
through its effect on communication speed.

Peak Withdrawals
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Figure 7: Interaction of u and 1/ on the peak of withdrawals
Reading note: Heatmap shows peak withdrawals AW as function of deposit utility u (x-axis) and
average meeting time 1/ (y-axis). Dark blue indicates low peaks while yellow indicate high peaks.
Run-prevention threshold shows the inverse relationship between u and 1/3. Steeper gradient at
high 1/ shows stronger marginal effect of u when communication is slow.

6 Fitting the Model to Crisis Dynamics

I now demonstrate the model’s tractability by fitting the closed-form expression for aggregate
withdrawals to intraday stock returns during the crisis period, treating stock prices as a proxy
for deposit dynamics. The exercise serves two purposes. First, and most importantly, it
demonstrates the model’s tractability: the closed-form solution makes it feasible to recover
structural parameters from observational data. Second, it allows to interpret the crisis
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thorough the lenses of my model—in particular, whether observed heterogeneity reflects
differences in depositor communication networks or differences in perceived bank fragility.

6.1 Methodology

I fit the model to intraday stock returns for banks in my sample during an extended crisis
period, including the beginning of recovery (March 6-21, 2023).@ Specifically, I estimate
the following reduced form equation for aggregate withdrawals from my model:

1 1

AW() = Glt) = Gl =71) = T i — T3 oA

where G is the logistic learning curve and ?.;q denotes the midpoint of the logistic curve
(determined by the initial condition). I fit this functional form to observed stock returns
separately for each bank in my sample using nonlinear least squares, estimating three param-
eters: communication speed 3, reentry time 77, and the timing parameter t,,;q. The model
is estimated on 10-minute high-frequency return data, smoothed with a 1h rolling window
to reduce noise.

Remark 2 (Interpretation of Estimated Parameters). The communication speed [ is an
exogenous structural parameter, determined by the depositor network’s infrastructure (geo-
graphical clustering in Section 2 but alternatively social media penetration, shared VC' net-
works, etc.). In contrast, the reentry time 77 is an endogenous equilibrium outcome—a model-
implied parameter that depends on exogenous primitives (3, p, u, etc.) through equilibrium
actions. My estimation strateqy treats both as parameters in the reduced-form equation, then
examines how they vary with observable bank characteristics.

6.2 Fit

Figure [§| presents model fits for six representative banks spanning different crisis experiences.
These banks were selected to represent diverse cases: banks that faced severe difficulties
during the crisis (SVB, Signature, PacWest), large retail banks (US Bank, Citi), and a
local regional bank (Bank of Hawaii). SVB and Signature exhibit rapid price declines,
while Citi and US Bank show more gradual dynamics despite similar initial conditions. The
model captures these patterns reasonably well, achieving a median R? = (.812 across all
banks.ﬁ The heterogeneity arises naturally from variation in the estimated parameters:
banks experiencing severe crises have higher estimated § (faster information spread) and
higher 7; (longer withdrawal periods).

34Two methodological caveats merit acknowledgment. First, Cipriani et al. (2024) document that while
stock returns correlate strongly with deposit outflows during the run phase of the 2023 crisis, this correlation
weakens during recovery periods—suggesting stock prices may not fully capture reentry dynamics. Second,
my model require that agents cannot observe aggregate withdrawal curves in real time, as this would allow
them to time runs precisely. Stock prices, however, are publicly observable. I reconcile this tension by
viewing stock returns as reflecting information available to market participants distinct from depositors.
These limitations however are real and the exercise is best interpreted as illustrating the model’s quantitative
tractability—showing that the closed-form solution can be meaningfully estimated—rather than providing
a definitive empirical test. An ideal setting would perform that exercise on actual deposit outflows.

35Figure 22| in Appendix [B| presents the full distribution of R? values and additional fit examples.
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Figure 8: Stock prices and model fit for selected banks.

Reading note: In orange, high frequency price change (TAQ) from March 6th baseline price. In
red end-of-day cumulative returns (CRSP) from same date. In blue, fitted logistic curve. Panels
illustrate heterogeneous dynamics: sharp decline with no recovery (SVB, Signature), strong decline
followed by partial slow recovery (PacWest), or moderate declines (Citi, Bank of Hawaii, US Bank).
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6.3 Analysis of Estimated Parameters

Using the estimated model parameters, I examine whether these model-implied measures
correlate with the exogenous proxies for fundamental risk and coordination frictions intro-
duced in Section . Specifically, I test whether estimated communication speed B correlates
with depositor HHI (my proxy for coordination frictions), and whether estimated reentry
time 77 correlates with the k solvency threshold measured from deposit franchise values.

I first examine whether depositor concentration proxies for communication speed. If the
HHI measure captures information diffusion rates as the model suggests, one should observe
a positive correlation between HHI and estimated B . Table [2| reports the results. Columns
(2) to (4) shows that HHI is indeed strongly positively correlated with A, supporting the
interpretation that depositor concentration facilitates information transmission.

Interestingly, x also seems to play a role. Safer banks (higher x) exhibit slower estimated
B . This is somewhat puzzling from the model’s perspective, since k is a measure of funda-
mental fragility rather than network structure, and should not directly affect communication
speed. The correlation may reflect omitted factors—for instance, banks with riskier business
models (low k) might also attract depositors who are better connected through industry
networks. Alternatively, it could indicate that information spread depends on depositors’
behavior such as through social learning mechanisms discussed in Section 7.

The reentry time 7; presents a different pattern. Table |3| regresses estimated 7; on both
HHI and . The solvency measure « is strongly negatively correlated with 7;: safer banks
exhibit shorter withdrawal durations. Interpreting this through the model requires nuance.
Strictly speaking, increasing the withdrawal capacity x in the model mechanically extend
run duration, and through it extend 7;. This is because when « is high, runs take time to
coalesce, making agents wait longer. It is a mechanical effect, unrelated to the riskiness of a
bank. The empirical result is better interpreted through the view that high-solvency banks
are perceived as having lower ex ante probability of fragility (lower p in the model). As
established in Lemma [3 lower p accelerates belief updating and induces significantly earlier
reentry. The data suggest this “safety belief channel” dominates the “capacity channel”:
strong fundamentals shorten runs by reassuring depositors, not by lengthening the time to
collapse.

The coefficient of HHI on 77 is statistically insignificant. As discussed in Appendix [A]
(Remark , the theoretical effect of connectedness on physical reentry time is actually
ambiguous: while higher 3 increases reentry time in scaled units, translating to physical time
shrinks it back. The insignificant HHI coefficient is therefore consistent with the model’s
predictions.

Taken together, these results illustrate that the model developed in Sections 3-5 can be
brought to data in a meaningful way. The closed-form expression for aggregate withdrawals
allows estimation of structural parameters using standard methods, and the recovered pa-
rameters vary sensibly with observable bank characteristics. While this exercise does not
constitute a definitive test of the model’s microfoundations—the data limitations and proxy
measures discussed above preclude strong causal claims—it demonstrates that the theoretical
mechanisms provide a useful lens for interpreting heterogeneous crisis dynamics.
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Dependent Variable:

Estimated S

0 2) 3) (4)
Solvency k -0.1317%** -0.129%**
(0.034) (0.031)
Depositor HHI 0.469***  0.465%** 0.060
(0.089) (0.085) (0.098)
Indicator (k < 1) -0.062**
(0.024)
k < 1x Depositor HHI 1.062%**
(0.155)
Uninsured Share 0.433%#%  (0.332%FF  (.293***  (.237***
(0.093) (0.094) (0.090) (0.084)
Dom. Deposits (log) 0.006 0.004 0.013 0.007
(0.010)  (0.009)  (0.009)  (0.008)
Wholesale sh. of dep. -0.273 -0.463* -0.367 -0.525%*
(0.248)  (0.240)  (0.230)  (0.211)
Constant 0.143 0.041 0.042 0.052
(0.143)  (0.140)  (0.134)  (0.127)
Observations 173 173 173 173
R? 0.227 0.276 0.344 0.449

Note: *** p<0.01, ** p<0.05, * p<0.1.

Table 2: Relationship of estimated 8 with bank characteristics.

Reading note: Regressions of estimated communication speed B on bank characteristics. Col-
umn (2) shows HHI is strongly positively correlated with ﬁ (R? = 0.276), supporting the hypothesis
that depositor concentration facilitates information transmission. Solvency measure « is negatively
correlated, suggesting safer banks experience slower rumor diffusion.
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Dependent Variable: Estimated 7

M) 2) (3) (4)
Solvency k -1.730%** -1.726%**
(0.490) (0.491)
Depositor HHI 1.028 0.979 0.712
(1.386)  (1.342)  (1.715)
Indicator (k < 1) 0.699
(0.430)
k < 1x Depositor HHI 0.428
(2.713)
Uninsured Share 5.025%F*  5.245%** 4 730%FF 4 .868***
(1.356)  (1.456)  (1.417)  (1.465)
Dom. Deposits (log) 0.410%%*  0.308**  0.425%**  0.366%*
(0.143)  (0.145)  (0.145)  (0.147)
Wholesale sh. of dep. 3.691 2.203 3.494 2.708
(3.605)  (3.722)  (3.621)  (3.707)
Constant -3.993%* -4.220%  -4.207FF  _5.341%*
(2.079)  (2172)  (2.102)  (2.226)
Observations 173 173 173 173
R? 0.244 0.190 0.246 0.213

Note: *** p<0.01, ** p<0.05, * p<0.1.

Table 3: Relationship of estimated 7; with bank characteristics.

Reading note: Regressions of estimated reentry time 7; on bank characteristics. Solvency mea-
sure  is strongly negatively correlated with 77: safer banks exhibit shorter withdrawal durations.
This reflects the “safety belief channel” (lower perceived fragility p induces earlier reentry) domi-
nating the mechanical capacity effect. HHI coeflicient is statistically insignificant, consistent with
the ambiguous theoretical prediction discussed in the appendix.
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7 Extensions

This section extends the baseline model in three directions. First, heterogeneity in learning
speeds allows some depositors to be better connected than others. Second, deposits may
accrue interest at rate r > 0. Third, agents learn by observing others’ withdrawal behavior
rather than through word-of-mouth communication.

The results obtained in this section are numerical. I refer to Appendix [C]for a discussion
on the numerical implementaion.

7.1 Heterogeneity in Learning Speed

The baseline model assumes all agents learn at the same rate 3. In practice, depositors
vary in how connected they are to information networks. Some depositors—such as large
institutional investors or those active on social media—Ilearn quickly about rumors, while
others learn more slowly. The effects of such heterogeneity are not obvious as it affects both
individual withdrawal strategies and aggregate run dynamics.

I extend the model by dividing agents into K types indexed by k, each learning at rate
Br. Type k comprises a fraction py of the population. The learning dynamics for each type
are:

dGi(t) = (1 = Gk(t)) x w(t) x By dt,

where w(t) = ), pwGr(t) is the overall fraction of informed agents. An uninformed agent
of type k meets others at rate [, with probability w(¢) of meeting an informed agent. The
system of equations can be explicitly interpreted as a mean-field approximation of rumor
spreading on an actual network as we grow the network size to infinity. As discussed in
Newman (2018), the approximation holds when the expected degree of a randomly selected
neighbor is independent of one’s own degree[”

Faster learners become informed earlier, which accelerates information spread to slower
learners, coupling the dynamics across types. Equilibria can still be characterized as before:
each type has its own exit time 7o and reentry time 77;. As in the homogeneous case, a
counting argument shows that not all exit times can be interior.

However, faster types need not exit immediately. Because they learn earlier and have
better information about the timing of the run, they can afford to speculate by delaying their
exit. Well-connected agents therefore face less run risk. They can wait until the last moment
to withdraw, maximizing their time holding deposits while still avoiding the crash. Network
position thus creates inequality: better-connected agents gain both earlier information and
the ability to exploit it.

Figure [9] illustrates equilibrium dynamics in a two-type model with mostly slow agents
(90%) and a small fraction of very fast agents (10%, learning 100 times faster). Aggregate
withdrawals primarily track the gradual buildup from slow agents who withdraw immediately
upon learning. Fast agents, despite being few, create a sharp concentrated spike that triggers
the crash as they coordinate their exit. Visually we observe an intense run pressure in a

36Gimilar approximations are possible under less restrictive assumptions. In each case, they involve classi-
fying agents in groups based on their structural position in the network — each group would have a different
learning dynamic.
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narrow window before collapse. Figure [0 also shows interesting recovery dynamics. After
the crash, the withdrawal curve exhibits a slight relapse as fast agents reenters. Slow agents
however continue exiting and reach their peak withdrawal rate only later, causing aggregate
withdrawals to briefly increase again before the long recovery begins. The asymmetric run
and recovery is consistent with empirical evidence on protracted recoveries.
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Figure 9: Equilibrium dynamics under heterogeneous learning speeds
Reading note: Aggregate withdrawals with two depositor types: slow agents (90%) who with-
draw immediately upon learning, and fast agents (10%, learning 100x faster) who delay withdrawal
to speculate. The curve primarily tracks gradual buildup from slow agents, with a sharp concen-
trated spike just before crash from fast agents’ coordinated exit. After the crash, a slight relapse
occurs as slow agents reach their peak withdrawal rate, before entering a prolonged recovery.

7.2 Interest Bearing Deposits

Throughout the main analysis, I assumed deposits do not accrue interest, making agents’
holding decisions essentially static. I now relax this assumption and show how to solve the
problem when deposits earn interest at rate r > 0. While this complicates the analysis,
numerical exercises confirm that all main results continue to hold.

When r > 0, the agent’s problem becomes a dynamic programming problem. With
wealth growing at rate r, the agent’s continuation value depends on both wealth level W and
time since learning 7: V (W, 7). However, utility’s homothetic structure—linear in wealth—
implies multiplicative separability of the value function: V(W,7) = W x V(7), where V(1)
is the value of $1 of wealth. The optimal value V(7) solves the Hamilton-Jacobi-Bellman

equation:
0=V + r;l(ég( {(u+7rV (1)1 —a(r)) + h(r)(a(r) = V (7))}

— 0=V +h(r)(1 = V(r)) +max {u+rV(r) — h(r),0}.
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The HJB captures the agent’s tradeoff when deciding how much wealth to stash in cash.
The marginal cost is (u+7V (7)), which now includes both utility flow u and deposit returns
rV (7). The benefit mirrors Section 4.1: retrieving the dollar stashed in cash if the bank
crashes immediately, which occurs with probability h(7). Crucially, agents retrieve the
nominal dollar value, not the continuation value V(7).

As in the main case, linearity in « implies bang-bang solutions: the agent either holds
everything in deposits or withdraws everything to cash. Unlike with no interest, however,
V(1) now depends on future actions and must be solved as part of the equilibrium. The
optimal strategy is:

o (1) =

1 ifu+rV(r) < h(r)
0 ifut+rV(r)> h(r)

To prevent V' from growing unboundedly when crash risk vanishes, I introduce an exogenous
maturity processﬂ] deposits mature at rate 6 > r, yielding $1 upon maturity (e.g., the bank
closes after repaying all deposits). The modified HJB becomes:

0=V + (h(1) +0)(1 — V(7)) + max{u + rV (1) — h(7),0},

with terminal condition V(0) = (u+0)/(r + J), representing the present value of holding $1
in a safe deposit: convenience yield u, interest r, and maturity payoff 1 at rate 9.

The value function V(7) inherits properties from h(7): it is non-monotonic, reflecting
the interplay between capital gains, crash risk, and maturity. Figure [10| shows the hazard
rate decomposition in this extended model, in a case where u = 0 and deposit attractiveness
only comes from returns r. The dynamics remain qualitatively similar to the baseline, with
h(7) unimodal and unique exit and reentry times. Intuitively, the effect of r parallels that of
u: higher interest rates make deposits more attractive, inducing earlier reentry and reducing
peak withdrawals.

7.3 Social Learning

The baseline model assumes agents learn about solvency shocks through word-of-mouth:
informed agents directly communicate the rumor to those they meet. A more realistic mech-
anism that I study now is social learning: agents observe others’ withdrawal behavior and
infer the presence of a rumor from these actions. While this mechanism offers additional
realism and aids interpretation of empirical patterns, the resulting equilibria remain quali-
tatively analogous to the baseline case, with equilibrium objects differing only modestly in
quantitative terms.

Under social learning, agents meet others at rate [ as before, but now observe only
whether the person they meet is currently withdrawn from the bank. If they observe a
withdrawal, they infer a rumor may be circulating. The learning dynamics now depend on
aggregate withdrawals rather than the fraction of informed agents:

dG(t) = (1 — G(£)) AW (1) dL.

3"The constraint § > 7 ensures that the value of deposits remains bounded. Economically, it requires that
deposits mature faster than they appreciate and the continuation value would diverge. Alternatively we can
think of § as the rate of an idiosyncratic liquidity shock forcing agents to consume their wealth.
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Figure 10: Hazard rate decomposition with interest rates
Reading note: The hazard rate h(7) (purple) remains unimodal, equaling subjective crash
probability m(7) (blue, declining) times conditional crash rate hy(7) (red, rising). In gray the
instantaneous reward for deposit: wealth appreciation.

Uninformed agents still meet others at rate 3. However, the probability that this meeting is
with a withdrawn agent equals AW (t), the aggregate withdrawal level. This couples learning
directly to withdrawal behavior.

The equilibrium definition must be modified to account for this coupling. A stationary
equilibrium now requires that learning and withdrawal dynamics jointly satisfy:

dG(t) = (1 — G(t)) AW (t)B dt
AW (t) = G(t) — G(t — ),

where the second equation uses the fact that agents still withdraw immediately upon learning
and reenter at 7;. The equilibrium is characterized by solving these coupled equations
simultaneously.

One key difference from the baseline is that withdrawn agents act as “infectious” only
while withdrawn. In the baseline, agents remain informed forever, continuing to spread the
rumor even after reentering. Under social learning, agents who reenter no longer contribute
to information diffusion because they no longer exhibit withdrawal behavior. Figure
illustrates this mechanism: social learning produces slower, more gradual runs because the
“infectious period” is now endogenous, equaling the withdrawal duration 7;. This creates an
amplification effect: increasing u not only induces earlier reentry (reducing the peak directly)
but also shortens the infectious period (reducing information spread). The curve-flattening
effect of higher deposit yields therefore operates through an additional channel under social
learning.

The social learning mechanism offers a potential explanation for the negative correla-

A

tion between fundamental fragility () and estimated communication speed () documented
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in Section 6. Under social learning, fundamentally stronger banks induce earlier reentry,
shortening the period during which withdrawn agents remain “infectious”. This slows infor-
mation diffusion. The estimated g would thus appear lower for safer banks, even though the
underlying network structure (proxied by HHI) remains unchanged.

Under social learning, the initial condition of the learning process can be seen as a“seed”
AW (0) of initial withdrawals that unravel into the run. AW(0) could potential be an in-
teresting parameter to study in future research. Initial withdrawals could arise from various
sources: agents who receive direct news about the shock (e.g., through private research),
or idiosyncratic withdrawals unrelated to coordination (e.g. liquidity-driven or yield-driven
outflows after interest rates hikes). The size of this initial condition generates potentially
interesting comparative statics that I have not fully explored yet. The effect is not obvious: a
larger seed accelerates learning, potentially amplifying runs. Yet sophisticated agents might
also be reassured by large initial withdrawals: the withdrawals they observe are “natural”
and not evidence of coordinated run.
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Figure 11: Comparison of run dynamics under different learning mechanisms
Reading note: Panel (a): baseline word-of-mouth learning where informed agents spread ru-
mors indefinitely. Panel (b”: social learning where agents infer rumors by observing withdrawal
behavior. Social learning produces slower, more gradual runs because agents who reenter stop being
“infectious,” dampening information spread.
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8 Conclusion

I develop a dynamic model of bank runs where information about potential insolvency
spreads gradually through depositor networks following epidemiological diffusion processes.
The model shows that coordination frictions—captured through the speed of information
transmission—do not merely slow runs but can prevent them entirely: sufficiently high co-
ordination frictions imply peak withdrawals never exceed the bank’s solvency capacity, even
when fundamentals are genuinely fragile. Beyond the immediate context of banking, this
framework applies broadly to many coordination problems in finance (and beyond), where
the structure of the asset holder base determines the feasibility of collective attacks (bubbles,
currency attacks, sovereign debt crises, etc.). We do observe such phenomena empirically,
suggesting a fertile area for future research: Internet-based assets like cryptocurrencies or
meme stocks, characterized by concentrated and highly connected holder bases, face rapid
coordinated runs and high volatility. Conversely, globally dispersed safe assets like U.S.
Treasury debt may source some of their stability form a dispersed base of heterogeneous
international investors where information circulates slowly. This general principle suggests
that what makes an asset “safe” or “fragile” depends not only on its intrinsic value but also
on the social structure of its investors.
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A  Proofs

I prove results under a general continuous, differentiable and increasing information diffusion
process G(-), imposing additional structure only when needed. This clarifies which conclu-
sions depend on the logistic specification versus more general learning dynamics. I maintain
the assumption that learning completes within time 7.

One assumption I will make repeatidly is that the likelihood intensity function g(t) = %Et)
is log-concave. It is straightforward to check that for the logistic model dG = G(1 — G)3dt,

that assumption holds.

A.1 Proof of Lemma 2 (hazard rate).

In this subsection, I present an extended version of Lemma [2| detailing key properties of the
hazard rate. Hazard rates are analyzed using reversed time, 7 = &* — 7, where 7 is time
since learning and £* is the duration until collapse for a fragile bank relative to the initial
event ty. This shifts the focus to the time remaining before the potential collapse. It will be
useful to introduce the following notation.

e Ty ~ Exp()\): time of solvency shock, with realization ¢,
e T;: calendar learning time for agent i, with realization t;

o L; =T,— Ty € [0,n]: lag before agent i learns about the shock, the time between ¢,
and when the agent learns. Note that G is the CDF of L;.

e T the random variable for the time of collapse (7" = oo if no collapse).
e 1, be the indicator for the bank being fragile with P(1; = 1) = p.

e When focusing on stationary equilibirum, let hr(t;£*|t;) be instantaneous hazard rate
of collapse at time t for an agent who learned at t;, which depends on the crash delay
after to: &*.

Using the notation defined above, in a stationary equilibrium, we have T = Ty + £* if
1y =1and T = oo if 1y = 0. The lemma below is an extended version of Lemma [2| that
formally characterized h, the hazard rate in reversed time 7. The rest of the proofs will
always work directly with that object.

Lemma 2 (extended). Suppose that for any realization of the shock ty, the collapse occurs
at time to + £, where £ is a fized positive constant. The following properties hold:

1. The hazard rate depends only on the time elapsed since learning, T =t —t;, crash delay
& and parameters p, \,n, g. It does not depend explicitly on the specific learning time
t;. We can therefore write h(t;&*) = hy(t; + 7|t;), and specifically:

ME =) (g% _
" pe gl& —7
hr&) = —e=— ( )n -

ply eMg(s)ds+ (1 —p) [) erg(s)ds
h(7,£*) =0 otherwise.

, Jor& =T (1)
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2. For T € [0,&"], define reversed time 7 = §* — 1 € [0,£*]. The hazard rate in reversed
time, h(T) := h(7,£*), depends only on T.

3. The (reversed time) hazard rate can be decomposed as h(7) = m(7)hs(7) where:

o 70(T) is the posterior belief that the bank is fragile given information at reversed
time T, and is non-decreasing in T.

° ]_lf<7_') 15 the posterior hazard rate of collapse conditional on the bank being fragile
(lp=1).
e The evolution of these components in reversed time for 7 € (0,n) is governed by:
dn(7) = n(7)(1 — m(7))hy(7) d7,
dhy(r) = = (he(7) = (GG +A) ) hs(7) dr.
Suppose furthermore that g € C?0,n] is strictly log-concave with g(0) > 0 and ¢'(0) finite.
Then the following also hold for 7 € (0,n]:
4. hy(7) is non-increasing in 7.

5. h(7) is unimodal in 7.

A.1.1 Proof of point 1.

Step 1: crash time hazard-rate. The hazard rate for collapse at time ¢, conditional on learning
at t; and crash happening at Ty + £* is

hy (€T = t;) = fr(t|t:)/Sr(t[t:),

where fr(t|t;) is the overall posterior density and Sy (t|t;) is the posterior survival function.
The subscript T highlights that we take these quantity with respect to the crash time random
variable. They implicitly depend on the equilibrium object &*.

Using the law of total probability, the fact that fragility is independent of learning time,
and the fact that P(T" <t;t;,1; = 0) = 0 for finite ¢, we can express:

1—pP(T <tt;;1;=1)

he (68| T = t:) = (2)

Step 2: shifting to the Ty random variable. Letting ty =t —£*, we can relate the required
conditional density and CDF of T' to those of Ty. Given the independence of the (Tj, £;)
process from 1, conditioning on 1; = 1 does not alter the posterior distribution of 7 given
T; = t;. Therefore:

o fr(to+ &t 1y =1) = fr,(tolti, 1y = 1) = fr,(tolts)
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where fr, (+t;) and P(T < -|t;) are the posterior density and CDF of T} given T; = t;. Noting
that the event T' =1 = to + £* is the same as Ty = t — £*, it suffices to study the following

quantitylﬂ:

. pIn(tlt)
PllolT = 1) = T2 P Ty < tolty

Step 3: computing posteriors.
The posterior density fr,(to|t;) can be computed using Bayes’ theorem:

fTo (tou—; = tz) XX fTo (to) X LIkthOOd(T‘Z = tZ|T0 = to)

Note that the event {T; = t; given Ty = to} is equivalent to the event {To+L; = t; given Ty =
to}, which simplifies to {£; = t; — to} (given the independence of £; and Tj). Recall that
g(s) characterizes the likelihood intensity associated with the underlying learning process
completing at lag s. The above expression can thus be rewritten as:

fro(to| Ty = t3) o< fr (o) g(ti — to) = Ae™ 0 g(t; — o).

Since we focus on realizations to > 1 the support for ¢y (given t;) is [t; — n,¢;]. The
normalization constant C(t;) is found by integrating the expression Ae *og(t; —t,) over this
support:

t;
C(t;) = / Ae Mog(t; — ty)dt
ti—n
U
= \e M / e*g(s)ds, using substitution s = t; — t{.
0
Let I, := On e*g(s)ds (note that constant is independent of ¢;). The posterior density of Tj
conditional on T} = t; i@:

AeMog(t; —to) — Ae Mog(ti —to)  g(ti — to)

fTo (t0| i tl) C(ti) )\6*’\“[7, [n (3)

This expression holds for ty € [t; — n,t;]. For ty < t; — n, the posterior density is 0. For
to > t;, the posterior density is also 0, as it would imply a negative learning lag.

The posterior cumulative distribution function P(Ty < t|7; = t;) is obtained by inte-
grating the posterior density over the relevant range. After change of variable we obtain:

1/
P(Ty < [T =t;) = —/ e*g(s)ds,
t

177 i—to

38The notation has an hazard rate for Tj is a slight abuse: the event Ty doesn’t depend on bank fragility
and the real hazard rate for Tj should be written with 1 instead of p.

398eemingly innocuous, the final equality below, where e~** is brought to the numerator, is the crucial
stepping stone that will allow focusing on stationary equilibrium (as already noted in Abreu and Brunner-
meier (2003)). It follows from the memoryless property of the exponential distribution and tells us that we
can focus only on the time between ty and ¢; rather than their calendar values.
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Step 4: Final formula for hazard rate. Substituting the derived fr,(¢o|t;) and P(Tp <
to|t;) into the hazard rate formula , evaluated at t =ty + £*, we get:

p eA(ti_tO)g(ti _ to)

TO( 0’ ) In _pf;i?_to e)\sg(s)ds

which can be re-expressed as:

pe/\(ti_t())g(t — to)
pftl toe’\s s)ds+ (1 —p fne/\s

(4)

Step 5: Time since learning.
Let 7 = t — t; be time since learning. We evaluate the hazard at ¢ = ¢; + 7, which
corresponds to tg =t — & =t + 7 — &

peX&g(er — 1)

he(ti + 7,8 t) = by (i + 7 = &[T = i) = —
! " Pl Te“( ds + (1= p) [/ (s

(5)

A.1.2 Proof of point 2.

Immediate from closed form.

A.1.3 Proof of point 3.

Point 5 decomposes the hazard rate into belief and conditional hazard components, and
derives their evolution in reversed time. I first establish this decomposition generally, then
specialize to our model.

Lemma 4. Let T be a random variable representing the time of failure of a system, with
positive support. Suppose the system can be of two types: fragile (with prior probability p)
or fail-safe (with prior probability 1 — p). Assume the failure time is T = oo if the system is
fail-safe. Let 1 be the indicator variable for the fragile state. Define:

PA<T<t+AT>t)

A7 1s the overall hazard rate.

o n(t)=P(1y=1|T >t) is the posterior probability of being fragile given survival up
to t.

o hy(t) = limasso P(tST<t+AAﬁTZt’ﬂf:1) is the hazard rate conditional on being fragile.

The following properties hold:
1. h(t) =m(t)hs(t).
2. Furthermore, if the failure time distribution for the fragile type admits a density then:

dm(t)
dt

= —m(t)(1 = 7(t))hy(2).
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Proof. Proof of Claim 1: By the law of total probability, conditioning on the type 1:
Pt<T<t+At|T>t)=Pt<T<t+At|T>t,1;=1)P(1l;=1|T>1)
+PEt<T<t+At|T>t,1;=0P(L;=0|T>1).
Since T' = oo if 15 = 0, the second term is zero. Substituting the definitions of 7(¢) and
hf(t)l

Pt<T<t+At|T>t1;=1)
At—0 At

Proof of Claim 2: We first express 7(t) using Bayes’ theorem. Denoting Sf(t) the survival
function conditional on being fragile, we have:

Assuming Sy(t) is differentiable with density f(t) = —S}(t), we differentiate m(t) with

respect to t to obtain:
dm(t)
dt

= —hy(t)m(t)(1 — w(t)).
O

I now turn the proof of the point 3. Applying the lemma to the hazard rate obtained in
the proof of point 1, we have:

h(tlt:) = m(t|t:)hy(t[t;) (6)
and

dﬂgti) = —m(t|t:) (1 — w(t|t:) hs(t]ts). 0

We need to show how that the decomposition holds in the single-variable reversed time for-
mulation, i.e. using h(7).

Step 1: independence of learning time. Note that the conditional hazard rate hy(t|t;)
corresponds to the scenario where fragility is certain (p = 1). Setting p = 1 in the derivation
for h(t; + 7|t;) (specifically, applying it to the structure derived in (), we see that the
resulting expression for hy(t; + 7|t;) depends only on 7. We can write hy(7) = hy(t; + T|t;).
From (), since h(7) and hy(7) depend only on 7, it follows that m(¢; + 7|t;) = h(7)/hy(T)
must also depend only on 7. We write w(7) = 7(t; + 7|t;).

Define 7 = ¢* — 7 and h(7) = h(7), #(F) = 7(7), and hs(7) = hs(7). The decomposi-
tion @ holds in reversed time:

WT) = 7(T)hs (7).
This establishes the first part of point 5.
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Step 2: Dynamics of w. Note that % =
into (7)):

Td __ d d _drd _ (_1\d : :
S = 7 and o~ = = = (—1). Substituting

dr(T) -

7= = (M)A = a(F)hys(r) = —a(T)(A = 7(7)) s (7).

Dynamics in reversed time are therefore:

T — 2(7)(1L — 7(7) s (7).

Since € (0,1) and hy > 0 (as it’s a hazard rate), we have dr/d7 > 0, confirming that 7(7)
is non-decreasing (and increasing if hy > 0).

Step 4: Dynamics of hy B
Set p = 1 in the final expression for h(7) given in :

}_l (7__) pe)\fg(_)
d p [T erg(s)ds + (1 —p) [ erog(

eMg(7)

Jo €g(s)ds

This provides the closed form for the conditional hazard rate h;(7) that we can differentiate.
Let N(7) = e*g(7) and D(7) = [ €**g(s)ds. Then hy = N/D. We have:

p=1

N(7) = 4 (0() = A a(r) + 5 (1) = N @) (3 + L),

] 9(7)
D)= g2 [ ats) = a(r) = (o)

Then,

dhy N'D—ND'"  N\+g'/g)D— N(N)
dr D2 B D2

::_-[Ef(%)-— (A-+ i;é:;)} hs(7),
where we use ¢'/g = (G')'/G' = G" /G’ (recalling that g = dG/dt).

A.1.4 Proof of point 4.

We want to show that h;(7) is non-increasing in 7 for 7 € [0, 7], under the assumption that
the function g(s) is strictly log-concave (and satisfies the associated regularity conditions
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stated in the Lemma, including g € C?, g(0) positive and finite, ¢’(0) finite). From Step 4
(dynamics of hy) in the proof of point 3, we have the ODE:

T = [hg(7) ~ k(7)) (),

where k(7) = A+ g,,((;). Since h(7) > 0, the sign of the derivative is determined by the sign
of —[hs(7) — k(7)]. Thus, h; is non-increasing if and only if §(7) := hy(7) — k(7) > 0.

Let’s analyze the behavior of §(7) near 7 = 0. Under the stated regularity conditions for
gat 7 =0:

N (=
lim Bf(f') = lim % = +00
F—0t 70t fO e>\59<3)d3
/
tim k() = A+ 20 hich is finite.
0+ g(0)

Therefore, lim-_,o+ §(7) = +o00 > 0.

Suppose, for the sake of contradiction, that 6(7) becomes negative for some 7 in (0, 7).
Since 6(7T) starts positive and is continuous, there must exist a first point 7. € (0, 7] where
d(7.) = 0 and 0'(7.) < 0. We have at that point:

§(7) = =3(7ly(72) = K (7) = =(0) x hy () = () = K (7).

The assumption that g is strictly log-concave means (logg)”(7) = k'(7) < 0 for 7 € (0, 7).
Therefore, we must have §'(7.) = —k'(7.) > 0, a contradiction.
We can conclude that: _
dhy N
—= = —0(7) hy(7) < 0.

dr ~ ——
>0 >0

A.1.5 Proof of point 5.

We want to show that h(7) is unimodal in 7 under the assumption that the function g(s) is
log-concave.

Suppose h(7) has an interior critical point 7* € (0,n), where fl—z - = 0 (if not it is
monotonic, hence unimodal). We will show that this must be a local maximum by examining

d?logh
dr?

a local maximum. If all interior critical points are local maxima, the function cannot have
any interior local minima and must therefore be unimodal (h being continuous).
Consider the logarithm of h(7):

the second derivative of log h(7). Indeed ’7 < 0 is a sufficient condition for 7* to be

log h(7) = log 7(7) + log h(7)
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Differentiating with respect to 7:

dlogh(7) 1 dn(7) 1 dhy(7)
dr w(T) dr hy(T) dT

Once more:

d72 dT

d*logh(7) d (—B . #)
)

=0:

Evaluating at the critical point 7* Where

_i (7)
— dr \ g(7)

We assumed that g is (strictly) log-concave, which 1mp11es (9 (?))) < 0.

d?log h(7) h(7
S drr

Therefore, at any interior critical point 7*:

d?log h(7)

d7?

< 0.

F*

This shows that log h(7) is strictly concave at 7*, meaning 7* must correspond to a local
maximum for A(7). This completes the proof of point 5.

A.2 Proof of Lemma 3
A.2.1 Preliminary Result
I start by a series of useful preliminary lemmas.

Lemma 5 (Unimodality of AW (-)). Let g(t) be strictly log-concave and positive. For any
fixzed T > 0, the function AW (t) is single-peaked (unimodal).

Proof. Step 0. Caset < 7. Suppose t < 7, then AW (t) = G(t) is strictly increasing. Hence
it does not achieve a maximum in this region. The rest of the proof assumes ¢ > 7.

Step 1. Re-expressing the condition. We analyze the derivative AW'(t) = g(t) — g(t — 7).
A function is unimodal if its derivative crosses zero at most once, from positive to negative.
Letting R(t) = we can write:

g(t-T)’

AW'(t) = g(t — 1) [R(t) — 1].
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Since g(t — 7) > 0, the sign of AW’(t) is determined by the sign of R(t) — 1.
Step 2. R(t) is decreasing. Consider the ratio R(t) = g(i(_t)ﬂ for t > 7. Letting ¢(t) =
log(g(t)), the derivative of the logarithm of the ratio is:

Slog R(t) = S16(0) — 6(t — )] = §(6) — (¢ — 7).

Since ¢(t) is strictly concave, its derivative ¢'(t) is strictly decreasing and we get ¢'(t) <

¢'(t — 7). Therefore, 4 log R(t) < 0, R(t) is strictly decreasing in ¢.

Step 3. Consequence for unimodality. Because R(t) is strictly decreasing, the equation
R(t) = 1 has at most one solution. Let ¢* be such a solution if it exists.

o If t* exists: For ¢t < t*, R(t) > 1 = AW'(t) > 0. Fort > t*, R(t) <1 =
AW'(t) < 0.

o If R(t) > 1 for all ¢, then AW'(¢t) > 0 always.
o If R(t) < 1 for all ¢, then AW'(¢) < 0 always.
In all cases, AW’(t) changes sign at most once, from positive to non-positive. O

Lemma 6 (Relationship between 77 and 7}). Maintain g is log-concave. Suppose an equi-
librium (7}, £) exist. Consider T = £* — 7}, we have:
dry

dr;

<0.

Furthermore, if k < maxco AW (L), then the inequality is strict:

*
dry
—%
dr}

< 0.

Proof. Step 1. Weak inequality. Implicitly differentiating the equilibrium condition G(£*) —
G(7f) = k with respect to 7; yields:

dg*
dry

G(E) > — Q') x 1= 0.

Since G'(£*) > 0, we have:
g G'(77)
dr O
Finally, differentiating the identity 77 = {* — 7/ gives:
dr _dge | OG)
dry —dmr T G(&)
The crash time is £* = inf{t : AW(t) = x}. Since AW is unimodal (Lemma [f]), this infi-

mum corresponds to the first crossing of the threshold x, which must occur on the increasing
branch of AW. Therefore, AW’(£*) > 0, which gives G'(¢*) —G'(7f) = AW’ (£*) > 0. Hence:

dri  G'(77)
= —1<0.
dry  G'(§) -
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L = 0 holds if and only if AW'(¢") = G'(€") —
G'(7}) = 0. By Lemmalf], AW (¢) is unimodal and achieves its maximum at a unique time ¢*
where AW’ (t*) = 0. Thus, equality holds if and only if the crash occurs exactly at the peak
of the aggregate withdrawal function, i.e., &* = t* and k = AW (¢*). Under the assumption
k< AW (t*) stated in the lemma, the crash occurs strictly before the peak (£* < t*). Since

AW is strictly increasing on [7},t*], we have AW’(£*) > 0, giving G'(¢*) > G'(77). Hence,

Step 2. Strict inequality. Equality

*
dry
—%
dry

< 0.

A.2.2 Proof of Comparative Statics for u,p,n

We analyze the local effects of u,p,n on the equilibrium reentry time 7;. By Lemma [0]
jgt < 0, so it is enough to analyze the effect on 7;.

Step 1. Case 7 = £*. Note that 77 = & <= 77 =0 <= u < h(0) (otherwise
71 < &*). In that case 77 is constant in u, p and 7. Since £* only depends on 7; and G, it is
also constant in those parameters.

Step 2. Case 11 < £*. In that case 7y must be interior and h(7}) = u. By point 5 of
lemma , the equilibrium occurs on the increasing branch of the unimodal h, ensuring
Oh/O07; > 0. Applying the Implicit Function Theorem to h(7;;p,n) —u = 0 gives:

dr 1
=—>0
du  Onjorr
dry h h
dg = —ST/SZ <0, since g—p > (0 (from Lemma closed-form),
7y h h
d:; - _ aah//ﬁa:[* > 0, since g—n < 0 (from Lemma closed form).

If K < max; AW (t) we must have Z;’: < 0 (by Lemma@) and the strictness in comparative
I
statics case 2 is passed on to 7;.
A.3 Proof of Proposition 2

Proposition 3 (Existence and Uniqueness of Run Equilibria). Given parameters (5, k, p,n)
and log-concavity of the learning intensity g, there exists a threshold uw > 0 such that:

1. A unique run equilibrium exists if and only if u < @
2. No run equilibrium exists if u > u
Moreover,

e IfG(n) > K+ G(0), then u > 0.
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o The peak withdrawal level AW = max, AW (t) is non-increasing for u < @ and strictly

decreasing in u for u € (h(0),a).

Proof. Part 1: Existence and Uniqueness of Run Equilibrium

The substance of the proof is to show that the set of v that admits an equilibrium is in
the form of an interval [0, u] (as opposed to a collection of interval, etc.).

I prove this result constructively by building a threshold % as the minimum of three cut-
offs, each arising from a necessary condition for equilibrium (together they are sufficient).
For any u, we attempt to construct a candidate equilibrium pair (£*(u), 7;(u)) satisfying: (i)
crash condition G(¢*) — G(7;) = k; (ii) reentry optimality 7; = inf{s € [0, 7] : h(s) > u; and
(iii) immediate exit h(¢*) > u. I then establish uniqueness and defer the proof that @ > 0
to the end.

Step 1: Candidate Construction. Fix u > 0.

Reentry time. From Lemma , the reversed hazard rate h(t) is continuous and unimodal
on [0,7] with peak value @; = maxep,, h(t) achieved at some tyeqr, € [0, 7). Define 77(u) =
inf{s € [0,7n] : h(s) > u} for all u > 0. For u < h(0), we have 7;(u) = 0 (corner solution).
For u € (h(0), 4], the function 7;(u) € (0, k] is the unique solution to h(t) = u on the
increasing branch and is continuous and strictly increasing by the Implicit Function Theorem.
For u > w4, no solution exists, delimiting the first cutoff u;.

Crash time. Given 7r(u), the crash condition G(£*) — G(7;) = k uniquely determines
& (u) = G Yk + G(7(u))), provided x+ G(7(u)) < 1. Since 77(u) is non-decreasing and G
is strictly increasing, this constraint becomes binding as w increases. Define iy = sup{u €
(0,u41) : kK + G(7r(u)) < 1} (set uy = wy if the constraint never binds), delimiting the
second cutoff. For u < min(ay, us), the candidate pair (£*(u), 7(u)) is well-defined, with
both components continuous and £*(u) strictly increasing in w. For v > min(u,, @) no run
equilibrium exists.

Step 2: FEquilibrium Verification. Suppose u < min(ty, @) so that £*(u) and 77(u)
are well defined. The candidate equilibrium need to satisfy the immediate exit condition:
h(&*(u)) > u. We analyze two cases based on whether A is globally monotone or unimodal.

Case (i): h(t) is strictly increasing on [0,7n]. Since h is monotone and £*(u) > 77(u) (from
G(¢*) = k+G(77) and G strictly increasing), we immediately have h(¢*(u)) > h(7(u)) = u.

Case (ii): h(t) is unimodal (increasing on [0,tear], decreasing on [tpear,n)]) or decreasing
(tpear. = 0). Define 7o(u) = sup{s € [0,7] : h(s) > u} for all u > 0. Form the unimodality of
h, the condition h(£*(u)) > u is equivalent to £*(u) < 7o(u).

Consider the gap function A(u) = 7o(u) — £*(u). If at u, To(u) is given by a corner
solution 7o(u) = n (when h(n) > u), To(u) is constant at that point. If not, then by the
Implicit Function Theorem, 7o (u) is strictly decreasing in u (using h'(7o(u)) < 0). In both
cases £*(u) is strictly increasing. Thus A(u) is strictly decreasing in w. If A(u) < 0 for all
u € [0, min(uy, 42)], then the immediate exit condition can never be satisfied, set 4 = 0.
Otherwise, since A(u) is strictly decreasing, either A(u) > 0 throughout, in which case set
u = min(uy,us), or there exists a unique threshold u* € (0, min(w@y, u2)) where A(u*) = 0,
set © = u*. In any case, equilibrium exists if and only if u < .

Step 3: Uniqueness. For u < h(0), the reentry time is 7;(u) = 0 (corner solution), then
G(&*) = K, since G is strictly increasing, both 77 and ¢* are unique. For u € (h(0), ),
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the function 7;(u) is the unique solution to h(t) = u on the (stricly) increasing branch of
the unimodal A (by construction in Step 1). Given 7;(u), the crash time &*(u) = G~(xk +
G(77(w))) is uniquely determined by the strict monotonicity of G. Thus, the equilibrium
pair (£*(u), 77(u)) is unique for all u < w.

Step 4: Case u > 0. To see when @ > 0, note that as v — 0, we have {*(u) —
G~ (k + G(0)) (since 77(u) — 0 by the corner solution in Step 1, and the crash condition
gives G(&*(u)) = G(7r(u)) + k). Furthermore 7o(u) — n as u — 0 by the same argument.
The condition n > G~ (k + G(0)) therefore ensures A(u) > 0 for u near 0, implying @ > 0.

Part 2: Comparative Statics of AW with respect to u

For u < h(0), we have the corner solution 7;(u) = 0. Then 7; = £*, which is independent
of u, and AW (t) = G(t) — G(t — £*) which is also independent of u. So the the peak
withdrawal AW is constant in .

Suppose now u > h(0). Then, AW (¢t;77) = G(t) — G(t — 77) and 77 (u) is the equilib-
rium reentry time duration, which is interior. Let t*(u) denote the time that maximizes
AW (t; 75 (uw)). Then AW (u) = AW (t*(u), 77 (u)). By the Envelope Theorem, the derivative

of the maximized value with respect to w is:

dAW  0AW (t, ) " drf
du oty du’

t=t*(u),7r="7; (u)
The partial derivative of AW with respect to 77 is:

OAWET) _ O 6y — Gt — )] = G/t — 7).

or T N 8_7'[
Substituting this into the Envelope Theorem expression:

JAW

) ] dry
T = G (u) = 77 (u)) x

du

To ensure this derivative is non-zero, we must verify that ¢t*(u) > 77 (u). In the run equi-
librium, the crash occurs at £* such that AW (£*) = k. If K < AW (t*(u)), then £* < t*(u).
Since 7;(u) = £ — 7 (u) < &%, we have 7/ (u) < t*(u). Therefore, t*(u) — 7/ (u) > 0. Since
G'(t*(u) — 77 (u)) > 0 and d7;/du < 0 by Lemma 3, we conclude that:

dAW

< 0.
du

Thus, the peak withdrawal level AW is strictly decreasing in u for u € (h(0),u).

A.4 Information diffusion speed f.
A.4.1 Change of Variables

To analyze the comparative statics with respect to the parameter 3, we perform a change of
variables to rescale time. Applying the change of variables t — t = (¢, the scaled parameters
become:
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Scaled communication speed: § = 1 (normalized).

Scaled arrival rate of the initial event: A = \//.

Scaled utility flow from deposits: @ = u/f.
e Scaled awareness window: 77 = 1 = 7 (constant across [ variations).

Parameters that do not involve time flows, such as the prior probability of fragility p and the

bank’s fragility threshold x, remain unaffected. The equilibrium conditions in the scaled sys-

tem are analogous to those in Proposition but with scaled parameters (5 = 1, A, 4,7, p, k).
1

It will be convenient to write a := 3 There is a direct linear relationship between uw and

1/6: the scaling parameter a jointly varies A = aX and @ = au while holding 7, p, K constant.
In that section (until the end of the appendix), we assume that the learning process
admits such scaling, formally that if G is parametrized by f, writing Gz, then Gs(t) =

G1(pt) = G(t). It is immediate to check that standard processes (logistic, exponential,
social learning from Section 7) all satisfy that property.

A.4.2 Comparative statics

Lemma 7. Consider the scaled system with B = 1, and fix base parameters \g > 0 and
uy > 0. Vary the scaling parameter a > 0 such that Aa) = aXy and @(a) = aug, holding
(7, p, k) constant. Suppose a run equilibrium exists in a neighborhood of the base parameters.
If adgn < 1, then:

Remark 3. Combining Lemmas[7 and [, the effect on the scaled reentry time satisfies:

dry dr; d7y
da  d7i da

=(<0)x (>0)<0.

That is, in the scaled system, higher a (equivalently, lower () reduces reentry time.
To translate this to physical time, note that Ty pnys = a - 7/ (a) (since physical time =
scaled time /B = ax scaled time). Thus:

ATr phys dry dry
Tda WO G ST gy
>0 20

The first term (direct scaling) is positive while the second (equilibrium effect) is non-positive.
These effects work in opposite directions, so the net effect of 5 on physical reentry time is
ambiguous and depends on parameter values.

Proof. The equilibrium condition requires either 7 = 0 (corner) or h(75; X(a), 7, p) —ii(a) = 0
(interior). In the former case 77 (a) is constant in a, so the derivative is 0. In the later, we
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apply the Implicit Function Theorem:

dry  (0hJON)(ON/Ba) — dii/Da
da oh)o7;
— )\ (83/85\) — Uo
O onjor;
ug — \o(OR/ON)
~ (0h)O7)

The equilibrium 7} occurs on the increasing branch of h, so dh/07; > 0. To prove the
lemma’s claim that % > 0, we need to show ug — Ag(Oh/ON) > 0.

We compute the derivative of h(7; 5\) with respect to A. Applying the quotient rule to
the closed form from Lemma [2] yields:

8h

o5 = N (= Eylslr).

where F5[s|7| denotes the posterior mean learning lag, given by:

pfose g(s)d pfoseg
pJy ey 8) L—p) Jg el

Now substitute this expression for 9h/dX into the condition ug—\g(Oh/AN) > 0, evaluated
at the equilibrium 7;:

Exls|T] =

uo = X |B(7: ) (7 — Exlsl7i)] = 0.
We can use the condition h(75;\) = (a) = auy:
ug — Ao [(auo) (7] — Ex[s|7[])] = 0.
Since uy > 0, this reduces to showing:
aXo (77 — E5[s|77]) < 1.

Since E5[s|7f] > 0 (from the definition) and 7} € [0, 7] (equilibrium constraint), we have
T — [ |77] < 77 < 7. Applying the lemma’s condition aAefy < 1:

Aa) (77 — Bx[s|7]]) < ado < 1.
Thus, 72 > 0 u

A.4.3 Proof of Corollary

Corollary 4. Assume parameters (u, A, k,p,n) satisfy n < 1/X\. There exists a threshold
B >0 such that:

e No run equilibrium exists if f < J.
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o A unique run equilibrium exists if 3 > .

Additionally:
e Ifk+G(n) > 1, then B> 0.
e The peak withdrawal AW = max, AW (t) is increasing in 3 for 3 > J5.

Proof. Part 1: Existence Threshold 3.

The proof is constructive and follows a similar structure as the proof of Proposition [2 I
switch to scaled time coordinates. In the scaled system, a run equilibrium is characterized
by a pair (£, 7;) satisfying three conditions analogous to Proposition : (i) crash condition
G(&*) — G(7F) = k; (ii) reentry 7i(a) = inf{t > 0 : h(t;a\) > au} is attained; and (iii)
immediate exit h(£*;a)) > au. I construct the set of a values for which such an equilibrium
exists, then translate back to .

Step 1: Existence and Properties of 7f(a).

Step 1a: Set of candidates a. From Lemma [2| h(t;a)) is continuous and unimodal in ¢
on [0,7], with hg(a) := h(0;aX) > 0 and peak value hpax(a) = maxe)o 5 h(t; a)) achieved at
some tyeqr(a) € [0, 7).

Define 77 (a) = inf{s € [0,7] : h(s;a)) > au} for all @ > 0. For au < ho(a), we have
77(a) = 0 (corner solution). For au € (ho(a), hmax(a)], the function 75 (a) € (0,%ear(a)] is
the unique solution to A(t;a)\) = au on the increasing branch and is continuous and strictly
increasing by the Implicit Function Theorem. For au > hyay(a), no solution exists, defining
the first cutoff. Let A; = {a > 0 : au < hyax(a)}.

Step 1b: Interval form.

We still need to establish that A; is an interval of the form (0, a;] for some a; > 0 (possibly
a; = o0). To show this, we analyze the monotonicity of hya(a)/a. From the derivative
formula for h(7; \) with respect to A (derived in Lemma , evaluated at 7 = tpeqr(a):

da a a a?

d (hma:c(a)) — % (a/\;bmaa:<(l> (tpeak(a) - E(z)\[8|tpeak(a)]) - Bmaz(a)) S th(a)(a)‘tpeak(a)_l)’

where the second inequality follows from Euz[s|tpear(@)] > 0. Under the maintained assump-
tion aA;j < 1 and since tpeqr(a) < 77, we have aMtpear(a) < 1, implying L (hpeq(a)/a) < 0.
Thus Ames(a)/a is non-increasing in a.

From this monotonicity, if au < hya.(a) for some a, then a’'u < hpg.(a’) for all @’ < a.
This establishes that if a € Ay, then (0,a] C A;. Taking a; = sup Ay, we obtain A; = (0, a;].
Note that 7/ (a) is either constant (corner case) or strictly increasing in a (Lemma [7)

Step 2: Ewxistence of €*(a). Condition 2 defines £*(a) = G~(k+ G(7F(a))). This requires
k+G(7f(a)) < 1. Let ay = sup{a € (0,a1) : k+G(77(a)) < 1}. Since 77 (a) is non-decreasing
and G is strictly increasing, G(7; (a)) is non-decreasing. For a € (0,as), £*(a) is well-defined,

continuous, and non-decreasing in a. Let Ay = (0, az).

Step 3: Verification of B(é*(a); a\) > au. Suppose a < ay. We analyze two cases based
on whether h is globally increasing or not.

o4



Case (i): h(t;a)) is strictly increasing on [0,7]. Since £*(a) > 7¢(a), we immediately
have h(€*(a); a)) > h(7f(a);a)) > au, for a < ay. Set @ = ay.

Case (ii): h(t;a)) is unimodal or decreasing. For a € A, a second solution 7p(a) to
h(t;a)) = au may exist on the decreasing branch; if no such solution exists, 7o(a) = 7. The
condition R (£*(a ); a\) > au reduces to £(a) < TO( ) in all cases. Define the gap function
Aa) = To(a) — & (a) for a € As. We need to show that the set of a values where A(a) > 0
has the form (0, a) for some a € [0, as].

We first handle the boundary cases. If A(a) > 0 for all @ € As, then the immediate
exit condition holds throughout, and we set @ = as. If A(a) < 0 for all a € Ay, then the
immediate exit condition can never be satisfied in the candidate region, and we set a = 0
(so the equilibrium set (0,a) is empty).

For the remaining case where A(a) changes sign, we establish that A(a) is non-increasing,
which ensures a unique crossing. The argument is similar as in the proof of Lemma [7]

Suppose 7o is interior. Applying the Implicit Function Theorem to h(t;a\) — au = 0 at
t ="7o(a):

dio  Oh/da  (ORJONA —u
da — Oh/Ot ohjot

The denominator 0h/0t is negative at 7o(a) (since we are on the decreasing branch). The
numerator is u[A(a)(To(a) — E5[s|7o(a)]) — 1]. Since To(a) < 7 and Fj[s|7o(a)] > 0, we
have 7o(a) — E5[s|To(a)] < To(a) < 7. Using the maintained condition A(a)n < 1, we obtain

X(a)(?o(a)—E;\[sh"o(a)]) < 1, making the numerator < 0. Thus, dgao = —% <0, and 7p(a)

is non-increasing in a. If 7y is an a corner, it is constant in a. Since f*(a) is non-decreasing
in a (from Step 2), A(a) is non-increasing. Therefore, if A(a) changes sign, there exists a
unique threshold az € (0, az) where A(as) = 0, with A(a) > 0 for a < a3z and A(a) < 0 for
a > az. We set a = az in this case.

Equilibrium exists if and only if a € (0, a).

Step 4: Uniqueness. For au < hy(a), the reentry time is 7 (a) = 0 (corner solution), then
G(£*) = k; since G is strictly increasing, both 77 and £€* are unique. For au € (ho(a), hmas(a))
and a < @, the function 7;(a) is the unique solution to h(t;a)\) = au on the strictly increas-
ing branch of the unimodal h (by construction in Step 1). Given 77 (a), the crash time
£ (a) = G Y(k + G(7F(a))) is uniquely determined by the strict monotonicity of G. Thus,
the equilibrium pair (£*(a), 7;(a)) is unique for all a < @.

Step 5: Finiteness of a. We show that @ < oo when k + G(n) > 1. Specifically, we
establish that as < oo where ay = sup{a € (0,a1) : k + G(7(a)) < 1}.

Rewrite the hazard rate as:

pg(7)

h(T;a)) = — .
( ) fOT eak(s—’?)g( )d8+ 1 _ fn ea(s— T)g( )d

For 7 < n, as a — oo:

h(Tiad) py(7)
a a [y e?=Ng(s)ds + a(l — p) [ e =T g(s)ds

— 0,
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since the first integral vanishes (as s — 7 < 0) while the second grows unboundedly (as
s—7>0). AtT=mn:

h(n;ad) _ pyg(n) o
a a [ e~ A=) g(s)ds ’

as the integral vanishes when a — oo. It follows from its definition that 7/ (a) — 1 as a — oo.

Equilibrium condition (ii) requires G(£*(a)) = k+G(7(a)) < 1. But from the parameter
assumption xk + G(77(a)) — k+ G(n) > 1, so condition (ii) cannot hold for sufficiently large
a. Therefore as < oo, which implies a < ay < .

Step 6: Conclusion.

Translating back to the original parameter 5 = 1/a, the condition a < a becomes 3 > 1/a.
Defining 3 = 1/a (with the convention that 3 = 0 if @ = 00), we obtain the desired result: a
unique run equilibrium exists if and only if 3 > 3, and no equilibrium exists if 5 < 5. When

K+ G(n) > 1, Step 5 ensures a < 0o, hence 5 > 0.

Part 2: Comparative Statics of AW
We first establish the effect in the scaled system. By the Envelope Theorem applied to
AW (t; 1) = G(t) — G(t — 7):

dAW

— /t*_ *
i G'( 77) > 0,

where ¢* is the time at which the peak is attained (strict positivity holds when x < AW (t*)).
Combined with dd%’ < 0 (from Remark , we have:
dAW  dAW dr} (
da — drf da

> 0) x (< 0) <0.

To translate to physical parameters, observe that AW is a dimensionless quantity (frac-
tion of deposits). Under the scaling transformation, peak withdrawals in physical and scaled
coordinates coincide: AW ppys = AW gegicq. Therefore, no “descaling” is required and:

dAW  dAW da 1
B da '%:<§0)X(_ﬁ)20'

Thus, AW is non-decreasing in 3 for 3 > 3. The increase is strict if K < AW (t*) and the
inequality in Lemma [7]is strict (e.g., if n < 1/A). O
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B Data and Empirical Results

This appendix provides detailed documentation of the data sources, methodology, and ro-
bustness checks underlying the empirical analysis.

B.1 Data

My empirical analysis combines multiple datasets to construct measures of bank connected-
ness and vulnerability during the 2023 regional banking crisis.

Data sources.

e Summary of Deposits (SOD) Data. Branch-level deposit information for 2022 was
obtained from the FDIC’s Summary of Deposits (SOD) database. Data was accessed
via the FDIC public API endpoint (https://banks.data.fdic.gov/api/sod). SOD
data report branch conditions annually as of June 30.

e Call Report Data. Balance sheet quantities and deposit franchise estimates are
obtained following Drechsler et al. (2025). Their dataset is constructed from quarterly
regulatory filings (FFIEC Call Reports, forms 031/041) accessed via the Wharton
Research Data Services (WRDS) platform, following standard procedures for variable
definitions and time-series harmonization.

e Stock Price Data. Daily stock price and return data are obtained from the Center
for Research in Security Prices (CRSP) database. Intraday trade data are obtained
from the Trade and Quote (TAQ) database. Both CRSP and TAQ data are accessed
via Wharton Research Data Services (WRDS).

e Matching. Data from the FDIC (SOD) and FFIEC (Call Reports) are matched at
the Bank Holding Company (BHC) level using the holding company’s RSSD ID. These
regulatory data are then linked to CRSP daily stock data by mapping BHC RSSD IDs
to CRSP PERMCOs using standard WRDS linking tables. For intraday TAQ data,
historical stock identifiers (tickers) associated with the BHC’s CRSP PERMCO are
retrieved from CRSP’s name history.

Sample. My analysis focuses on medium-to-large commercial banks with significant do-
mestic deposit bases. The sample includes Bank Holding Companies (BHCs) with at least $3
billion in total assets (as of Q4 2021) and substantial domestic deposit operations (deposit-to-
asset ratio above 65%, excluding broker-dealers, credit card banks, custodians, and foreign-
owned banks).lﬂ The focus on medium-to-large institutions ensures the sample includes

40Sample criteria are inherited from Drechsler et al. (2025]), whose deposit franchise estimates I employ, see
below. Their estimates cover commercial banks (not BHCs) with at least $1 billion in total assets, though I
further restrict the analysis to BHCs above $3 billion.
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banks comparable in scale to those most affected during the 2023 crisis and maintains suffi-
cient variability in depositor dispersion ] T exclude banks with deposits entirely concentrated
in a single branch. All results are reported at the BHC level, with branch-level and bank-level
data aggregated accordingly. The sample comprises 278 BHCs, of which 176 are publicly
traded [

Data Access Timing All data retrieved from FDIC API and WRDS were accessed on
October 10, 2025.

B.2 Variable Construction and Descriptive Statistics

This section documents the construction of the key empirical measures used in Section [2}
the solvency measure , depositor concentration (HHI), and cumulative stock returns during
the crisis period. I then present descriptive statistics characterizing the distributions and
properties of these measures across the sample of Bank Holding Companies.

B.2.1 Methodology

Deposit Franchise Value Construction. 1 obtain deposit franchise values following
Drechsler et al. (2025) methodology. The total economic value of a bank is decomposed into
its equity value and its deposit franchise value:

A-D + DF +DF, |,
——" N—— ——

MTM Equity Value  Deposit Franchise Value

where A is the marked-to-market value of assets, D is the book value of total deposits, DF7 is
the franchise value of insured deposits, and D Fy; is the franchise value of uninsured deposits.
I briefly review their construction here; see Drechsler et al. (2025) for complete details.

The marked-to-market equity value, A— D, is computed by adjusting reported equity (Q4
2022 Call Reports) for unrealized gains or losses on securities and loans through February
2023, using Bloomberg price indices following Drechsler et al. (2025)).

The deposit franchise value for each deposit type (insured/uninsured) equals the net
present value of expected future profits from these deposits. Drechsler et al. (2025) provides
a methodology to estimate deposit betas for uninsured and insured deposits separately,
combining these with estimated operating costs to determine deposit franchise value for
each group. I use their deposit franchise values as of February 2023.

I obtain deposit franchise and equity values separately for each bank within a BHC from
Drechsler et al. (2025), then aggregate to the holding company level using asset-weighted
means. All components (A — D, DF;, DFy) are expressed as ratios to total book assets for
comparability across institutions.

4lSmaller banks are generally local and concentrated, making it hard to separate effects stemming from
concentration and from size. The 3 billions threshold is chosen to match regulatory guidance: BHCs under
$3B are not required to file the consolidated FR Y-9C (they file instead FR Y-9SP).

427 few publicly traded banks are not represented in the TAQ dataset, further reducing the sample for
high-frequency analyses.
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I introduce the solvency measure . It is defined as the critical fraction of total deposit
franchise value (DF7+ DFy) that must be lost for the bank’s total value to fall to a distress
threshold, v, set at 3% of book assets in the implementationff] That is, x solves:

where A — D, DF; and DFy are all expressed as ratios to total book assets. In principle
k € [0, 1], where k£ = 1 implies robust solvency (economic equity remains above v even if the
entire deposit franchise is lost). However, I do not cap x at 1 in my empirical analysis. It
allows me to better gauge the distance from this robust solvency point []

HHI Calculation. I measure depositor concentration using the Herfindahl-Hirschman In-
dex (HHI) of deposits for each BHC. The HHI is defined as:

Deposits in branch & 2
HHI =
Z (Total Deposits in BHC) ’

keBranches

where the summation is over all branches k belonging to the BHC. This measure captures
the probability that two randomly selected dollars of deposits within the BHC come from
the same branch.

Cumulative Stock Returns. I compute cumulative stock returns for each BHC over the
crisis period from March 6, 2023 (close of trading) to March 13, 2023 (close of trading), using
daily total returns (including dividends) from the CRSP database. The cumulative return
for BHC i over this period is calculated by compounding the daily returns:

Mar 13
Cumulative Return; jos/arar,13/Mar] = ( H (1+ reti,t)> -1,
t=Mar 7

where ret,; ; is the daily total return for BHC 7 on trading day ¢. The product is taken over
the trading days from March 7, 2023, to March 13, 2023, inclusive.

B.2.2 Descriptive statistics.

Before turning to discussing robustness of the main findings of Section [2] T provide further
descriptive analysis of my primary measures of risk: solvency x and depositor HHI. This
analysis doesn’t require stock data and is performed on the full sample of BHCs, including
those that are not publicly traded.

433% is chosen to match the Basel III capitalization ratios. Banks under 3% are considered severely
undercapitalized.

44A § of 2 for example would mean that we would need to destroy double the deposit franchise to make
the bank insolvent.
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Distribution of Solvency Measure « Figure|l2|presents the distribution of the solvency
measure k across BHCs in the sample. In blue are publicly traded BHCs used in regressions
(176 entities), while the grey bars shows the full sample (278 BHCs). The distribution shows
heterogenity: while many banks cluster around x = 1, a significant fraction falls below this
threshold, indicating vulnerability to deposit franchise losses. Banks with x > 1 tend to stay
near unity but do include a notable right tail of highly robust institutions.

All Banks Public Banks
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Voo [ '
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Solvency k

Figure 12: Distribution of x across BHCs.
Reading note: Histogram showing solvency measure « distribution across BHCs in sample. Most
banks cluster near k = 1 (solvent), with notable left tail of vulnerable banks (k < 1) including
crisis-affected institutions.

Distribution of HHI. Figure shows the HHI distribution across BHCs, ranging from
near-zero to close to one. Figure respresents the same distribution but the x-axis is in log
scale. Most banks exhibit relatively low HHI values (below 0.1), indicating diversified deposit
bases, though a substantial minority shows high concentration. Traditional retail banks like
Bank of America have low HHI, while SVB and Citigroup appear as high-concentration
outliers. All banks experiencing difficulties during the 2023 crisis had high HHI values, with
SVB representing the most extreme case.

Evolution of HHI. Figure [14]shows the evolution of average deposit HHI for BHCs from
1994 to 2022@ I also plot a selected sample of individual banks to illustrate their evolution.
Note the y-axis is in log scale. The data reveal a secular increase in average HHI since 1994,
somewhat slowed by the financial crisis and COVID-19, reaching historically high levels in
the 2020s. Average HHI nearly doubled: from around 0.03 in 1994 to about 0.06 in 2022.

45The national average includes all commercial banks with over $3 billion in assets (in 2021-equivalent
dollars, adjusted for inflation using CPI) and over 0.65 domestic deposits to asset ratio. The average is
weighted by BHC asset size.
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Figure 13: Distribution of HHI across BHCs.
Reading note: Histogram of depositor HHI in linear (left) and log (right) scales. Most banks
exhibit low HHI (diversified deposits), but substantial minority shows high concentration. Crisis-
affected banks (SVB, First Republic, Citi) appear as high-HHI outliers.
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Figure 14: Evolution of Average Deposit HHI for medium to large BHCs (1994-2022)

Reading note: Time series of asset-weighted average HHI (purple line) with +1 SD band
(shaded) and selected individual banks (dotted). Log scale on y-axis. Secular increase from ~0.03
(1994) to ~0.06 (2022), with crisis-affected banks already exhibiting high HHI pre-2023.
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While some larger banks such as Citi and US Bank substantially increased their HHI since
2005, the banks most impacted by the 2023 crisis displayed high HHI well before the event.

Correlation with Deposit Rates. Table 4| and Figure explore the relationship be-
tween BHC-level HHI and the average deposit rates paid by these institutions.@ I find a
strong positive correlation, suggesting that banks with a more concentrated depositor base
(higher HHI) tend to offer higher deposit rates. In the context of my model, this correla-
tion could be explained by equilibrium effect: banks with a more concentrated deposit base
compensate elevated risk by offering higher rates. More generally, such correlation might be
explained by a “deposit clientele effect” as proposed by Benmelech et al. (2024)@

Dependent Variable: Deposit Rate
(1) (2) (3) (4) (5)
Depositor HHI 0.022%** (0.023***  0.022%*F*F  0.023%*F*  (.022%**
(0.002) (0.002) (0.002) (0.002) (0.002)
Dom. Deposits (log) 0.000 0.000 0.001***
(0.000) (0.000) (0.000)
Uninsured Share 0.001 -0.000 -0.003
(0.002) (0.002) (0.002)
Wholesale sh. of dep. 0.037%**
(0.005)
Constant 0.006*** 0.001 0.005%%* 0.000 -0.005
(0.000) (0.003) (0.001) (0.003) (0.003)
Observations 278 278 278 278 278
R? 0.399 0.404 0.400 0.404 0.493

Note: *** p<0.01, ** p<0.05, * p<0.1.

Table 4: Relationship between Depositor HHI and Deposit Rates (2022Q4).
Reading note: OLS regressions showing positive correlation between HHI and deposit rates.
Column (4) with full controls shows HHI coefficient of 0.022, suggesting concentrated banks offer
higher rates.

One may worry that the effect of HHI on run severity could be confounded by deposit
rates. Indeed, higher deposit rates can reflect higher deposit betas (implying lower deposit
franchise values) and may influence depositor behavior by making deposits more attractive
to retain (as argued in my model). Notice however that such factors would imply smaller
runs, not larger ones as I document.

Depositor concentration in the literature. I discuss here two related papers that also
study depositor concentration, albeit they propose different measures. Already mentioned
is the study by Benmelech et al. (2024). They study “bank density”, defined as the number

46Deposit rate is computed at the BHC level as the ratio between total interest paid on deposits (net)
and total deposits. Wholesale share of deposit is the share of time deposits above $250k on total domestic
deposits.

47A short discussion of that paper bellow.

62



—Merchants

0.03
Customers

Signature

/Citi

©
o
N}

South. 1st Banc. PacWest

Deposit Rate

South. Miss. Bank B k/UniteVF"St Fou

SVB /

USBark &

% JPMorgan
ey ¢
[ _
;.Bank of Hawai Cambridge Bancorp
’ \Heritage

0.00 s Comerica

0.01

0.00 0.25 0.50 0.75 1.00
Depositor HHI

Figure 15: Scatter plot of HHI vs. Average Deposit Rate (2022)
Reading note: Scatter plot with fitted regression line showing positive relationship between
depositor concentration (HHI) and deposit rates. Selected banks labeled, including crisis-affected
institutions at high-HHI end.
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of branches over the deposit volume per BHC. They find that banks with lower density
(fewer branches per dollar of deposits) were more vulnerable to runs during the 2023 crisis,
consistent with my HHI findings. While related, bank density does not capture the possibility
that banks might have concentrated deposits in a few branches while having a large number of
branches overall—a nuance better captured by HHI. Benmelech et al. (2024) interpret their
results as evidence of a “deposit clientele effect”, where concentrated banks cater to urban,
educated, financially sophisticated depositors. My interpretation focuses more directly on
HHI’s role in facilitating depositor communication. Overall my view is that both frameworks
are in agreement: they emphasize that information spreads faster within concentrated deposit
bases.

Kundu et al. (2025) provide yet another alternative measure of depositor concentration:
the share of deposits accumulated within the single largest branch (or county) of a BHC.
They find that, on average, 30% of a bank’s deposits are concentrated in a single county.
Their measure is, in a sense, at the opposite end of the spectrum from Benmelech et al.
(2024) bank density: the latter abstracts completely from the within-bank repartition of
deposits, while this measure focuses on the largest single unit (branch or county) and ig-
nores smaller ones. My HHI measure lies somewhere in the middle, capturing the overall
distribution. The study by Kundu et al. (2025)) is not focused on the 2023 runs but rather on
the macroeconomic effects of the geographical concentration of deposits. Methodologically,
Kundu et al. (2025) provides strong evidence supporting the validity of using SOD data for
computing depositor concentration, particularly documenting that reporting errors should
not be a major concern[™|

B.3 Robustness and Graphical Evidence

This section validates the main empirical findings from Section [2] T first present graphical
evidence illustrating the interaction between depositor concentration and fundamental sol-
vency documented in the regression analysis. I then assess robustness of the main results
across alternative risk measures, control specifications, and sample restrictions.

Specification. As discussed in the main text, I focus on two baseline models:

Stock Return; = SHHI,; + ok, + Controls; + ¢;, (8)
Stock Returni = 51HHL + ,62]1,%.<1 + BgHHL X ]lm-<1 + COHtI‘OlSi + €, (9)

where the dependent variable is the total stock return from March 6 to March 13, 2023.
Specifications of controls vary across different robustness exercises, as discussed below.

B.3.1 Graphical Evidence

Figure [16| provides visual evidence for the interaction effect documented in the main text
(Table . The figure plots the relationship between depositor concentration (HHI) and cu-
mulative stock returns during the crisis period (March 6-13, 2023), separately for vulnerable
banks (k < 1, left panel) and robust banks (k > 1, right panel).

48Indeed, a potential issue of the SOD data is that banks can choose where to report deposits. Interpreting
SOD branch reporting requires careful consideration of potential biases in such choices.
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Among vulnerable banks (k < 1), the negative relationship between HHI and stock re-
turns is pronounced. Banks with high depositor concentration experienced substantially
larger price declines, with the linear fit capturing a steep downward slope. In contrast,
among robust banks (x > 1), the relationship is notably weaker. Most observations cluster
in a region of moderate price drop regardless of HHI level, and the fitted line is much flat-
ter. This visual evidence directly confirms the regression-based interaction effect: depositor
concentration’s impact on crisis outcomes appears clearly when fundamental vulnerabilities
are present, but plays little role when banks have strong solvency buffers.
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Figure 16: Scatter plots of Cumulative Stock Returns vs. HHI by Solvency Subsample.
Reading note: Split sample analysis showing HHI effect varies by solvency. Left panel (k < 1):
steep negative relationship, vulnerable banks with high HHI experienced largest declines. Right
panel (k > 1): flat relationship, robust banks largely unaffected by HHI.

B.3.2 Robustness

Alternative risk measures and controls. To verify that the coordination risk captured
by HHI is distinct from fundamental vulnerabilities, I assess the stability of the HHI coeffi-
cient across alternative specifications. I substitute £ with: (i) marked-to-market losses (as
percentage of 2021 Q4 book value); (ii) uninsured deposit ratio relative to mark-to-market
assets (as in Jiang et al. (2024)); and (iii) uninsured solvency k,, which is defined similarly
to x but only uninsured deposits can run (v = A — D + DF; + (1 — k)DFy). Control
variables include log of domestic deposits, uninsured deposit share, and wholesale deposit
Share.@ Figure |17 presents coefficient stability plots showing the point estimate of the HHI
coefficient and confidence intervals across specifications, with results for both standard and
winsorized HHI using conventional and robust standard errors.

The point estimate remains consistently negative, ranging between -0.2 and -0.5 across
specifications. Controlling for the uninsured share of deposits seems to reduce the coefficient

Defined as the share of time deposits above $250k on total domestic deposits.
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Figure 17: Coefficient stability plot for HHI.
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Consistently negative (—0.2 to —0.5) across all specifications.

Winsorized HHI yields larger magnitudes. Robust standard errors (wider intervals) suggest het-
eroskedasticity, but estimates remain significant.
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magnitude. Winsorizing HHI strongly increases the coefficient magnitude across specifica-
tions (i.e. more negative), an effect likely due to the skewness of the HHI distribution. The
main specification (non-winsorized) is therefore conservative. Finally, using robust standard
errors increases confidence bounds noticeably, suggesting some heteroskedasticity in the data
(again, likely due to the skewness of the HHI distribution). Estimates remain nonetheless
significant.

To better visualize the role of controls, Table 5| presents the results of the main regression
specifications using k as the primary risk measure and with a full set of controls. Throughout
bank size and the share of uninsured deposits are significant, with larger banks and those with
a higher share of uninsured deposits experiencing more negative stock returns (consistent
with findings throughout the literature). Coefficients on HHI are robust to introducing these
controls, including when considering the interaction term.

Dependent Variable: Cumulative Stock Return (Mar 6-13, 2023)

(1) (2) (3) (4)
Solvency 0.087*** 0.087***
(0.021) (0.020)
Depositor HHI -0.232%F*%  _(0.229%** -0.123*
(0.058)  (0.055) (0.070)
Indicator (k < 1) -0.014
(0.017)
k < 1x Depositor HHI -0.267+*
(0.111)
Uninsured Share -0.257FF* - _0.213%**  _0.190*** -0.177HF*
(0.058)  (0.060)  (0.057) (0.059)
Dom. Deposits (log) -0.017F6F  -0.015%*  -0.021*** -0.018***
(0.006)  (0.006)  (0.006) (0.006)
Wholesale sh. of dep. -0.013 0.094 0.034 0.091
(0.155)  (0.156)  (0.149) (0.151)
Constant 0.120 0.177* 0.169* 0.215%*
(0.089)  (0.090)  (0.086) (0.089)
Observations 176 176 176 176
R? 0.285 0.279 0.350 0.335

Note: *** p<0.01, ** p<0.05, * p<0.1.

Table 5: Main Regression Results: Depositor HHI and Stock Returns.
Reading note: Full-control specification of main regressions. HHI coefficient robust to including
log deposits, uninsured share, and wholesale share. Bank size and uninsured deposits remain
significant predictors. Interaction term (x < 1x HHI) are large and significant.

Excluding Failed Banks. To ensure that the main findings are not disproportionately
influenced by institutions that failed during the March 2023 crisis period (namely, Silicon
Valley Bank, Signature Bank, and First Republic Banklg_UD, I re-estimate the set of regression
specifications analyzed in the paragraph above, but this time excluding these failed banks
from the sample. Figure [18| presents the results in the form of a coefficient stability plot.

50Gilvergate Bank, having failed prior to the March 6-13, 2023 estimation window, is already excluded
from the primary sample.
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Coefficient Stability Plot for Depositor HHI
Dependent Variable: Cumulative Stock Return (Mar 6-13, 2023) (with robust standard errors)
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Figure 18: Coefficient stability plot for HHI (excluding failed banks).
Reading note: Robustness check excluding SVB, Signature, and First Republic. HHI coefficient
remains negative and mostly significant, though slightly smaller magnitude. Some specifications
with k, and uninsured controls cross zero with robust SE, but winsorized estimates remain robust.
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The estimated HHI coefficient remains consistently negative and mostly statistically sig-
nificant across the various specifications, albeit slightly smaller in magnitude. Confidence
intervals cross zero (with robust standard errors) in some very specific cases: when using &,
as the measure of fundamental risk and controlling for uninsured deposits simultaneously. If
HHI are winsorized, the estimates are robust.

B.4 Model fitting
B.4.1 Methodology

This section details the methodology employed in Section [6] when fitting the model to high-
frequency stock return data.

Data. I use high-frequency intraday stock price data sourced from the Trade and Quote
(TAQ) database (available on WRDS). TAQ provides comprehensive trade and quote infor-
mation for U.S. equities, identified by ticker. I map the RSSD IDs of banks in my sample
to their CRSP PERMCOs, then to TAQ via tickers using CRSP name history. TAQ data
is queried from March 6, 2023 (9:00 AM) to March 21, 2023 (4:50 PMT] covering trading
days during and immediately following the acute crisis period. Individual trade prices are
aggregated to 10-minute, then smoothed using a one-hour centered rolling window. Returns
Rops(t) are derived as Ryps(t) = (1 — Ps(t)/ Ps(0)), where Py(t) is the smoothed price at time
t and Py(0) is the initial smoothed price (March 6, 2023, 9:00 AM). For failed banks, time
series are truncated at the close of the last trading day before closure: March 9, 2023 for
SVB and March 10, 2023 for Signature Bank.

B.4.2 Additional results.

Model Fit Examples. The Nonlinear Least Squares (NLS) estimation procedure yields a
satisfactory fit to observed stock price dynamics for most banks in the sample. Figure[19)to[2]]
provides illustrative examples beyond those in the main text, comparing smoothed observed
stock returns (cumulative percentage decline) against values predicted by the fitted model.
Examples are organized into three categories based on severity: (1) large shocks, (2) medium
shocks, and (3) small or no shocks. Each group uses its own scale for clarity.

For banks experiencing large shocks, the estimated curve R,,,qe1(t) effectively captures the
overall decline dynamics, including the initial rapid drop whose speed reflects the estimated B
(particularly evident for SVB). Among banks that survived, the model captures the beginning
of stabilization as peak withdrawals are reached (e.g., Customers Bancorp, Western Alliance),
with correspondingly high estimated peaks. For medium-shock banks, estimated peaks are
substantially lower, and the fitted curves exhibit the beginning of price recovery. Finally, for
banks with small or no shocks, model fit is generally weaker, though the logistic curve still
captures some price movements. These banks exhibit low estimated peaks and relatively flat
fitted curves.

5I'While I computed cumulative returns only through March 13 for the results in Section |2, I continue
through March 21 to include some of the recovery phase in model fitting. Each trading day extends from
9:00 AM to 4:50 PM to capture regular trading hours.
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In all groups, instances of poorer fit or non-convergence can arise when a bank’s stock
price stabilizes for an extended period after the initial decline without a prompt reversal, or
if the recovery is very slow. Since the specified R,,oq4e(t) implies a symmetric profile around
the peak withdrawal intensity (proxied as maximum price decline rate), it is less adept at
capturing such slow, asymmetric recoveries. This limitation is visible for banks like PacWest
Bancorp, where an initially rapid price decline is not followed by a correspondingly swift
reversal within the estimation window. In such cases, the NLS procedure may estimate a
lower B than warranted by the initial drop, effectively attempting to “postpone” the model-
implied reversal beyond the observed data to achieve a better overall fit.

Richer models might better capture these asymmetric recovery patterns (see the extension
section). Given the illustrative purpose of this model fitting exercise in the broader context
of the paper, I retain the current specification which has the advantage of obtaining a simple
closed form for aggregate withdrawals.

Goodness of Fit. To complement the individual examples, I assess overall model fit across
all banks using the R? from the NLS estimation, which quantifies the proportion of variance
in observed stock returns explained by the fitted model R,q¢(t). Figure presents the
distribution of values.

The median R? is approximately 0.81, indicating that the model explains a substantial
portion of variance in stock returns for at least half of the banks. The distribution is
somewhat right-skewed, with a tail of lower R? values corresponding to banks where model
fit was less precise.

These R? values generally indicate strong explanatory power, though goodness-of-fit mea-
sures for logistic-based models warrant cautious interpretation. Logistic functions are inher-
ently flexible and can adapt to various S-shaped patterns, potentially yielding high R? values
even when the underlying data generating process deviates from a true logistic form. Nev-
ertheless, combined with visual evidence from the fit examples, the overall high R? values
support the model’s utility for extracting dynamic parameters (fmid, B, 7) that characterize
observed stock price movements during the crisis.
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Figure 19: Stock prices and model fit for selected banks (Group: Large Shock).
Reading note: TAQ intraday prices (orange), CRSP daily returns (red), and fitted logistic
curves (blue) for banks experiencing large shocks. Model captures rapid initial decline (high 3) and
stabilization onset. Failed banks (SVB, Signature, First Rep.) show truncated series at closure.
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Figure 20: Stock prices and model fit for selected banks (Group: Medium Shock).
Reading note: Model fits for banks with moderate shocks. Lower estimated peaks (77) compared
to large-shock group. Fitted curves capture decline and beginning of recovery. Mid-range B values
produce intermediate-speed dynamics.
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Figure 21: Stock prices and model fit for selected banks (Group: Small Shock).
Reading note: Banks with minimal or no shocks. Model fit generally weaker but captures some
price movements. Low estimated peaks and relatively flat fitted curves. Large banks (JPMorgan,
Bank of America) show minimal price response despite high liquidity.
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C Computational Methods

This appendix provides detailed documentation of the numerical methods used to solve the
model’s equilibrium. While analytical characterization is possible for certain aspects, I solve
equilibria numerically because (1) it provides more insight into how the model actually works
(2) it extends naturally to alternative models from Section [7]
The complete Julia implementation of all computational methods described in this ap-
pendix is publicly available at https://github.com/Robin-Lenoir/replication-social-bank-runs.
gitl

C.1 Mathematical Framework
C.1.1 Problem Statement and Computational Challenge

The goal is to solve the equilibrium system formally defined in Proposition 1. The primary
computational challenge arises from a fixed-point problem: the optimal withdrawal times for
agents depend on the perceived hazard rate h(7), which in turn depends on the equilibrium
bank collapse time, £*. Simultaneously, the collapse time £* is determined by the aggregate
withdrawals, which are a function of those same optimal withdrawal times. This interdepen-
dency makes a direct solver approach complex, as it would require iterating on the entire
hazard rate function.

C.1.2 The Reversed Time Approach

My solution hinges on a change of variables to “reversed time”, a concept formalized in
Lemma of the proof appendix. Reversed time (7 = £* —7) represents the time remaining
until a potential collapse. The key observation from the lemma is that the hazard rate in
reversed time, h(7), is completely independent of the crash time £*. This allows one to solve
for unconstrained optimal agent behavior before determining the equilibrium crash time,
effectively decoupling the multi-variate fixed-point into a sequence of root-finding problems.

C.1.3 The Two Separable Equations

In reversed time coordinates, one can rewrite the equilibrium system in the following way:

Unconstrained Optimal Withdrawal Times The unconstrained optimal withdrawal
policies solve:

%g(%g =sup{7 : h(7) > u} (10)
TONC — inf{7 : h(T) > u} (11)

In equilibrium the domain of 77 is [0,&*] forcing potential corner solutions. It is useful
however to first compute the unconstrained values, because they are independent of £*.
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Constraint Application and Equilibrium For the unconstrained withdrawal times, we
can write the aggregate withdrawal function at the moment of collapse, £*, as:

A(E") = AW (£7:€7) = G(min(¢", 757 ) — G(min(§™, 779°)), (12)

where the first input in AW indicates that we evaluate aggregate withdrawal at ¢ = £* and
the second input makes explicit the crash time in the equilibrium under consideration. The
equilibrium £* must satisfy the condition A(£*) = k : at crash-time, equilibrium withdrawals
attain the bank capacity. As discussed below, one must also verify it is the first time the
implied AW (-, £*) crosses k.

While the final equation for £* is still non-linear, the system is now decoupled. One
can first solve for the unconstrained 7 values and then take them as given when solving the
final equation for £*. Each step involves solving for one unknown in one equation, for which
standard root-finding algorithms are well-suited.

C.1.4 Staged Computational Architecture

The solution method employs a three-tier staged approach that exploits this decoupled struc-
ture:

1. Stage 1: Solve learning dynamics G/(t).

2. Stage 2: Solve for unconstrained optimal withdrawal times 75N¢ and 7575 .

3. Stage 3: Solve the equilibrium condition for the crash time £* using A(E).

C.2 Stage 1: Learning Dynamics Solver
C.2.1 Logistic Model Formulation

The learning process follows a logistic ODE describing information diffusion through the

depositor population:

dG
o =BG -G() (13)

where G(t) represents the cumulative fraction of agents who have learned about potential
bank fragility by time ¢, and 8 > 0 is the communication speed parameter.
C.2.2 Problem Setup
The ODE is solved over a time domain [0, 7] with initial condition G(0) = Gy, where Gy is
a small positive number (typically 107%) to initialize the process.
C.2.3 Technical Implementation

The implementation uses standard adaptive ODE solvers. I use a 5th-order Runge-Kutta
with automatic step size control. The logistic equation’s multi-scale nature—rapid initial
growth followed by slower convergence—is handled efficiently by the solver’s automatic step-
size adjustments. I set tolerances to machine epsilon (& 1 x 107'%) to ensure maximum
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precision for subsequent equilibrium calculations. The adaptive grid generated by the solver
is inherited by all subsequent computational stages to maintain numerical consistency. The
discrete solution points (¢;, G(t;)) are converted to a continuous function G(t) via linear
interpolation.

C.2.4 PDF Computation

The learning probability density function is computed analytically from the ODE’s right-
hand side: e

o(t) = = = BG)(1 - G(1) (14)

where G(t) is the numerical solution from the ODE solver. I evaluate g(¢;) at each grid point
{t;} and create a corresponding interpolating function g(t).

C.3 Stage 2: Computing Unconstrained Optimal Withdrawal Times
C.3.1 Problem Statement and Approach

The goal of this stage is to find the unconstrained optimal withdrawal times that solve:
h(FYYOY =u and  h(75HE) = u (15)

I solve this by first computing h(7) over its full domain and then extracting the roots from the
list of values given by the precomputed function, leveraging its known unimodal structure.

C.3.2 Hazard Rate Function Computation

Grid Construction and Inheritance Strategy The computation operates on a reversed
time grid derived from the forward time grid {¢;} from Stage 1, preserving the adaptive
density.

Efficient One-Shot Integration. The hazard rate uses Lemma 2’s closed-form expres-
sion, which contains an integral term that is computationally expensive to evaluate repeat-
edly:
N (=
- e
R(7) = peg(7)
pf eMg(s)ds+ (1 —p fo eMg(

I resolve this bottleneck by computing the integral for all grid pomts in a single pass using
cumulative summation with the trapezoidal rule. This operation avoids the high cost of
repeated numerical integration calls inside an iterative root-finder. Once the integral term
is computed for all grid points, 2(7) can be evaluated efficiently on all grid points using
vectorized operations.

(16)

C.3.3 Root Extraction via Grid Search and Interpolation

With h(7) evaluated at all grid points, root extraction is a two-step process:
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1. Grid Scan: Create an indicator array I[h(7;) > u] to identify the grid points that

bracket the roots. 7H"¢ is bracketed by the first transition from 0 to 1, and 755 by

the last transition from 1 to 0.

2. Interpolation: Once the bracketing grid points are found, a precise root is obtained
via linear interpolation. This is computationally inexpensive while being more accurate
than simply snapping to the nearest grid point.

3. Boundary Cases: If no grid points satisfy h(7;) > u, both withdrawal times are set
to the domain boundary 7.

C.4 Stage 3: Equilibrium Solver via Adaptive Bisection
C.4.1 Problem Statement and Mathematical Framework
The equilibrium crash time £* satisfies £* = inf{t : AW (¢;£*) > k}, where AW (¢;€) repre-

sents aggregate withdrawals at time ¢ for a given reentry time 77 = £ — 77, 1 solve this
by finding the root of A(£) = k, where:

A(§) = AW (& €) = G(min(¢, 757 ) — G (min(€, 77y ) (17)

This formulation automatically handles constraint binding: as £ varies, the effective exit

and reentry times adjust via the min operators. By construction, ?OU(]]V:,Q > 7UN ¢ (agents

re-enter after exiting). This implies A(§) is weakly increasing in £ with three cases: (1) If
£ <79 A(E) = 0 (no withdrawals yet). (2) If T9NC < & < 750¢: A(€) = G(&) —G(FHNO)
(strictly increasing, main case). (3) If &€ > 7505 A(€) = G(F50F) — G(FHNC) (constant; if
this is less than k, no run equilibrium exists).

Because A(&) is monotonic, the bisection will find at most one root £* satisfying A(£*) =
k. However, this mathematical root is necessary but not sufficient for a valid equilibrium.
The implied time-series AW (¢;£*) may have crossed & at some earlier time t, < £*. In such
cases, £* is a “false equilibrium”: the bank would have crashed at ¢y, not £*. When a false
equilibrium is detected, there is no valid run equilibrium—monotonicity of A(§) ensures no
other candidate exists.

Remark 4. It is essential to distinguish between AW (t;&*), the time-series of withdrawals
for a fized collapse time parameter £, and the bisection object A(§) := AW(&;:€). The
latter conflates evaluation time with collapse time parameter, giving withdrawal volume at
the candidate crash time.

C.4.2 Bisection Algorithm

I solve A(£) = & using a bisection algorithm complemented by a finite-difference check to
ensure root found is indeed an equilibrium. In particular, the algorithm validates equilibrium
candidates using a finite-difference slope check. For each candidate &, I compute:

AAW = AW (£ + € €) — AW(&;€) (18)

where € is the local grid spacing of the learning CDF interpolation. If AAW < 0 at conver-
gence, & lies on the decreasing branch of AW (t;¢), indicating a false equilibrium.
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Algorithm Setup

e Initialization: I set search bounds, e.g., iy = 0 and & = T

e Function evaluation: AW (€ ess) = G(min(Euess, Topy ) — Gmin(€guess, T ©)).

e Error assessment: error = AW (§yuess) — K-

Iterations

1. Case 1: Overshoot (A > k + tol). The search has gone too far. Reduce upper
bound: &max < Eguess-

2. Case 2: Undershoot, Valid Direction (A < k — tol). The search is approaching
the first root from below. Increase lower bound: &min < §guess-

3. Case 3a: Converged, Valid Equilibrium (|JAW — k| < tol and AAW > 0). Root
found on increasing branch . Valid equilibrium: &* is the first crossing of k. Return £*.

4. Case 3b: Converged, False Equilibrium (JAW — k| < tol and AAW < 0). Root
found on decreasing branch (indicating false equilibrium). The peak of AW (t;&*)
occurred before £* and exceeded k, meaning the bank would have crashed earlier. No
valid run equilibrium exists. Return failure.

If the search interval |&ax — &min| collapses to machine precision without convergence, no
run equilibrium exists.

The No-Run Case If a run equilibrium does not exist for a given set of parameters,
the algorithm identifies this through: (1) the search interval |yax — &min| collapsing below
tolerance without finding a root, (2) detection of a false equilibrium (Case 3b), indicating
that while a mathematical root exists, the time-series dynamics would have caused an earlier
crash.

C.5 Extensions to the Baseline Model

This section documents the computational methods for the three extensions: heterogeneous
learning speeds, interest rates on deposits and endogenous social learning from observed
withdrawals. Each extension preserves the staged approach but requires specific modifica-
tions to handle the increased complexity.

C.5.1 Heterogeneous Learning Speeds

Modified Learning Dynamics The key computational change is the coupled system of
ODEs governing information diffusion:

dGy,
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This represents agents in group k learning from the overall pool of informed agents w(t) =
>.;PiGj(t). Closed-form solution exists for certain distributionﬁ but involves complex
expressions and do not extend to the social learning setting below. I solve this system
numerically using the same adaptive ODE solver as the baseline model.

Aggregate Withdrawal Computation The aggregate withdrawal function A(§) =:
AW (,€) to use in the bisection becomes a weighted sum across groups:

K
AW(€) = Y pi [Gilmin(§, 7507,)) — Gi(min(€, 7/%)] (20)
k=1

Each group k has its own learning CDF Gg(t) and hence, its own hazard rate. The
unconstrained optimal withdrawal times 7/¢ and 757, are computed using the same
root-finding approach as the baseline model, applied to each group. One key advantage
of the approach described above is that one can remain agnostic on which group will have
binding constraint and which will not (in particular it is possible for a group to have both

0 < T TEE < ©).

Computational Workflow
1. Solve the coupled ODE system for {G(t)}_, on the adaptive grid.

2. Extract optimal withdrawal times for each group using the baseline algorithm.

3. Solve for equilibrium &* using the weighted aggregate withdrawal function.

The equilibrium solver (Stage 3) remains unchanged except for the modified AW (€)
calculation.

Validation for Heterogeneous Groups Because the implied time-series AW (¢; £*) may
be multimodal (multiple humps from different group dynamics), the slope check I perform
in the main case is insufficient. Rather, I validate that the root is a correct equilibrium by
checking if AW (t;£*) crosses back below k at any ¢ < £*, which would indicate £* is a second
crossing rather than the first. This requires computing AW (¢;£*) over the grid for ¢ < &*,
which is O(n) but necessary only after convergence.

C.5.2 Interest Rates and Value Functions

Problem Formulation. With positive interest rate » > 0, agents maximize expected
discounted utility. This introduces a value function V' (7) representing the continuation value
of holding deposits in reversed time, where 7 = £* — 7 is the time remaining until potential
collapse (with 7 being time since learning). The optimal holding decision becomes:

Hold deposits if and only if h(7) < u + 7V (7) (21)
This modifies the threshold condition from h(7) < u to h(7) — rV(7) < u.

52The closed form solutions involves the moment-generating functions of the distribution, and are available
whenever MGF admit closed forms.
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Value Function Computation. The value function satisfies an ordinary differential equa-
tion derived from the Hamilton-Jacobi-Bellman equation. In reversed time, the HJB be-
comes:

V'(7) = (h(7) + 6)(1 — V(7)) + max{u + rV(7) — h(7),0} (22)

where 0 > r is the deposit maturity rate. The boundary condition is V' (0) = (u+9)/(r+9),
representing the present value of holding $1 in deposit: convenience yield u, interest r, and
maturity payoff 1 at rate J, evaluated at the crash time 7 = 0 (which corresponds to 7 = £*
in forward time).

I solve this ODE from 7 = 0 to 7 = 7 using the adaptive grid inherited from the
learning dynamics solver. This ensures consistency across all computational stages and
avoids interpolation errors.

Modified Optimal Buffer Computation Although the value function implicitly con-
tains the optimal holding strategy, I explicitly recompute the withdrawal times for clarity
and numerical stability:

1. Define the modified threshold function: h(7) = h(7) — rV (7)

2. Apply the baseline root-finding algorithm to find:

NG —inf{7 : B(f) > u} (23)
%gngTC = sup{7 : }NL(%) > u} (24)

This approach reuses the efficient grid-based root extraction from the baseline model
while incorporating the value function effects. The subsequent equilibrium computation
(Stage 3) proceeds unchanged with these modified withdrawal times.

C.5.3 Social Learning from Withdrawals

The Endogenous Learning Challenge Social learning fundamentally alters the model’s
structure by making learning dynamics depend on equilibrium behavior. Agents learn about
bank fragility by observing others’ withdrawals, creating a fixed-point problem: aggregate
withdrawals determine learning, learning determines optimal behavior, and optimal behavior
determines aggregate withdrawals.

Iterative Solution via Damped Fixed-Point Iteration I solve this fixed-point problem
through a damped fixed-point iteration scheme on the aggregate withdrawal function in its
entirety (rather than simply at collapse time - AW (&, €)):

1. Initialization: Obtain initial guess AW () (¢) by solving the baseline model (word-of-
mouth learning) without social learning effects.

2. Tteration: At each iteration n > 1:

e Solve learning ODE with forcing term AW ™D (t): € = 5(1-G(t)) x AW=(¢)

81



e Given G(t), compute hazard rates and optimal withdrawal times 79N, 75V

e Compute implied equilibrium collapse time ¢* and withdrawal function: AT/V(H) (t)
(I reuse the bisection algorithm on £ from the baseline but replace the withdrawe
al times and learning functions by what is obtained in step 1 and step 2).

e Apply damping with fixed parameter o = 0.5:
AW (1) = (1 — @) AW D(t) + AW ™ (1) (25)

Alternative damping schemes are possible but practice shows a uniform rule works
well.

e Check convergence: ||[AW ™ — AWM= <€

3. Convergence: Stop when iteration error falls below tolerance, or maximum iterations
is reached.

I assume the unimodal structure of AW persists under social learning dynamics, which
is verified numerically in all computed equilibria. Throughout the iteration, 7 is fixed to its
baseline value; it is not recomputed from the endogenous G curve.

Inner Loop Failure For a given AW ™1 (¢), the equilibrium solver (Stage 3 from the
baseline model) may find that there is no “inner” equilibrium. That is, fixing the learning
curve from dG™ = B(1—G)AW ™=V we cannot find crash-time £* satisfying the equilibrium
condition. Without a crash time, the next outer iteration’s aggregate withdrawal function
cannot be constructed. I address this by setting ¢™ = £~ 44/500, and compute AW (t) =
G(t) — G(t — £™ + 7), allowing the iteration to continue. While this lacks theoretical
foundation, it permits the algorithm to continue exploring for a potential solution.

Handling No-Run Cases The algorithm identifies no-run cases by failure to converge.
In contrast to the baseline case, the identification is not fully grounded in theory and simply
a pragmatic solution. The theoretical shortcoming is that there is a possibility that one
may fail to capture a run equilibrium (and label it as non-run), in particular because the
search path depends on the initial guess and the update rule in case of non-run in the inner
loop. Empirically, non-convergence seems to reliably indicate that no social learning run
equilibrium exists for the given parameters: varying initial guess, damping or update in case
of inner failure do not “save” equilibria. Non-convergent sequences typically oscillate from
the first few iterations or stay at AW = 0.

Computational Cost Convergence typically requires approximately 40 iterations for a
convergence of order 107°. Each iteration involves solving a complex ODE with the time-
varying forcing term AW =Y (t), which is computationally more demanding than the base-
line logistic ODE. Total computation time is approximately 20 seconds, compared to 0.5
seconds for the baseline model.
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C.6 Implementation Details and Figure Parameters

This section documents the exact parameter choices used to generate the figures in the main
text.

C.6.1 Baseline Model Parameters

The baseline model parameters, used as the foundation for all figures unless otherwise spec-

ified, are in Table [6]

Parameter Symbol Value

1.0
15.0

Communication speed 6]

Raw awareness window 7

Awareness window n 15.0 (= 1/P)
Utility flow from deposits u 0.1

Prior fragility probability p 0.5

Solvency threshold K 0.6
Exponential rate for ¢, A 0.01

Initial learning condition  G(0) 0.0001

Time span — (0,2n) = (0,30)

Table 6: Baseline model parameters used throughout the paper.

C.6.2 Figure-Specific Parameters

Table [7] summarizes the parameter values used for each figure in the main text. When a
cell shows a range (e.g., [0.001,0.2]), this indicates comparative statics over that parameter
range. All other parameters are held at baseline values unless otherwise specified.

C.6.3 Computational Settings

All computations use machine precision tolerances (=~ 10716) for ODE solving and 10712
relative tolerance for equilibrium root-finding. The Julia implementation exploits the staged
computational architecture to minimize redundant calculations, particularly by reusing learn-
ing dynamics across multiple equilibrium computations within parameter sweeps.
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Figure 8 U K r Description

Fig. 1: Learning {0.5,1.0,2.0} 0.1 0.6 —  Multiple 8 compar-
ison

Fig. 2: Hazard Rate 1.0 0.1 0.6 —  Main scenario

Fig. 3a: Main Eq. 1.0 0.1 0.6 —  Main scenario

Fig. 3b: Fast Comm. 3.0 0.1 0.6 —  High B case

Fig. 3c: Low Utility 1.0 0.01 0.6 —  Low u case

Fig. 4: u Effects 1.0 [0.001,0.2) 0.6 —  Comp. statics in u

Fig. 5: Cross-Effects [1,10%] [0.001, 1] 06 — 2D parameter
sweep

Fig. 9: Heterogeneity {0.125,12.5} 0.1 0.3 — Two-type  model
(90%/10%)

Fig. 10: Interest-rate 1.0 0.0 0.6 0.06 Interest-bearing de-
posits

Fig. 11: Social Learning 0.9 0.5 0.25 —  Social learning dy-
namics

Table 7: Parameter values for main text figures. All use p = 0.5, A = 0.01, n = 15/8,
time span (0,27) unless noted. Ranges indicate comparative statics. Figure 4 uses 5000
grid points, Figure 5 uses 500 x 500 grid with § = 1/meeting time where meeting time
€ [0.0001, 1]. Figure 9 uses heterogeneous [ values with population shares (0.9,0.1), p = 0.9,
A =0.1, 7= 30.0. Figure 11 uses p = 0.99, A = 0.25, 7 = 30.0 with social learning dynamics.
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